Zhang Wenchao, Liu Benjian, Zhang Sen, Zhang Xiaohui, Qiao Pengfei, Liang Bo, Fan Saifei, Su Tao, Liu Kang, Dai Bing, Zhu Jiaqi
National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China.
Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450008, China.
J Phys Chem Lett. 2024 Sep 12;15(36):9301-9310. doi: 10.1021/acs.jpclett.4c02040. Epub 2024 Sep 5.
The development of monolithic integrated energy-efficient complementary circuits is crucial for the large-scale application of wide bandgap semiconductor-based high-frequency and high-power field-effect transistors (FETs). However, the inferior performance of p-channel FETs attributed to low hole density and mobility presents a substantial challenge. Diamond is a promising candidate due to its excellent comprehensive electrical properties and high thermal conductivity. Here, we report the fabrication of normally off diamond FETs based on a low work function metal gate and (110) hydrogen-terminated diamond with high hole density. The use of high-quality SiO layer ensures the complete depletion of the channel by the gate and offers high gating efficiency. Therefore, the developed devices demonstrate exceptional reproducibility of normally off characteristics with centrally distributed threshold voltages (-0.37 ± 0.3 V) and realize large current and voltage handling capabilities and low static standby power consumption in a synergic manner with record-high on/off ratio exceeding 10, high current density (∼200 μA·μm), ultralow off-state current (∼fA·μm), and high breakdown voltage (-676 V). Additionally, the thermal desorption of negatively charged acceptors has been proven to significantly reduce carrier scattering. This work offers superior performance p-channel FETs for implementing energy-efficient complementary circuits, laying the groundwork for accelerated development in wide bandgap semiconductor power electronics.
单片集成节能互补电路的发展对于基于宽带隙半导体的高频和高功率场效应晶体管(FET)的大规模应用至关重要。然而,由于空穴密度和迁移率低,p沟道FET的性能较差,这带来了巨大挑战。金刚石因其优异的综合电学性能和高导热性而成为有前途的候选材料。在此,我们报告了基于低功函数金属栅极和具有高空穴密度的(110)氢终端金刚石制造的常关型金刚石FET。高质量SiO层的使用确保了栅极对沟道的完全耗尽,并提供了高栅控效率。因此,所开发的器件展现出常关特性的出色可重复性,阈值电压集中分布(-0.37±0.3 V),并以协同方式实现了大电流和电压处理能力以及低静态待机功耗,具有创纪录的高开/关比超过10、高电流密度(约200μA·μm)、超低关态电流(约fA·μm)和高击穿电压(-676 V)。此外,已证明带负电受主的热脱附可显著减少载流子散射。这项工作为实现节能互补电路提供了高性能p沟道FET,为宽带隙半导体功率电子学的加速发展奠定了基础。