Suppr超能文献

使用助听器集成加速度计估算步长和步态速度:不同算法的比较。

Step Length and Gait Speed Estimation Using a Hearing Aid Integrated Accelerometer: A Comparison of Different Algorithms.

出版信息

IEEE J Biomed Health Inform. 2024 Nov;28(11):6619-6628. doi: 10.1109/JBHI.2024.3454824. Epub 2024 Nov 6.

Abstract

Gait is an indicator of a person's health status and abnormal gait patterns are associated with a higher risk of falls, dementia, and mental health disorders. Wearable sensors facilitate long-term assessment of walking in the user's home environment. Earables, wearable sensors that are worn at the ear, are gaining popularity for digital health assessments because they are unobtrusive and can easily be integrated into the user's daily routine, for example, in hearing aids. A comprehensive gait analysis pipeline for an ear-worn accelerometer that includes spatial-temporal parameters is currently not existing. Therefore, we propose and compare three algorithmic approaches to estimate step length and gait speed based on ear-worn accelerometer data: a biomechanical model, feature-based machine learning (ML) models, and a convolutional neural network. We evaluated their performance on a step and walking bout level and compared it with an optical motion capture system. The feature-based ML model achieved the best performance with a precision of 4.8cm on a walking bout level. For gait speed, the machine learning approach achieved an absolute percentage error of 5.4 % ( ± 4.0 %). We find that the ML model is able to estimate step length and gait speed with clinically relevant precision. Furthermore, the model is insensitive to different age groups and sampling rates but sensitive to walking speed. To our knowledge, this work is the first contribution to estimating step length and gait speed using ear-worn accelerometers. Moreover, it lays the foundation for a comprehensive gait analysis framework for ear-worn sensors enabling continuous and long-term monitoring at home.

摘要

步态是一个人健康状况的指标,异常的步态模式与更高的跌倒风险、痴呆和精神健康障碍有关。可穿戴传感器有助于在用户的家庭环境中对行走进行长期评估。耳戴式传感器是一种可穿戴传感器,戴在耳朵上,因其不显眼且易于融入用户的日常生活,例如在助听器中,因此在数字健康评估中越来越受欢迎。目前,针对耳戴式加速度计的全面步态分析管道还不存在,该加速度计包括时空参数。因此,我们提出并比较了三种基于耳戴式加速度计数据估计步长和步速的算法方法:生物力学模型、基于特征的机器学习 (ML) 模型和卷积神经网络。我们在步幅和行走回合水平上评估了它们的性能,并将其与光学运动捕捉系统进行了比较。基于特征的 ML 模型在行走回合水平上的精度达到了 4.8 厘米。对于步速,机器学习方法的绝对百分比误差为 5.4%(±4.0%)。我们发现该 ML 模型能够以具有临床意义的精度估计步长和步速。此外,该模型对不同年龄组和采样率不敏感,但对行走速度敏感。据我们所知,这项工作是使用耳戴式加速度计估计步长和步速的首次贡献。此外,它为耳戴式传感器的全面步态分析框架奠定了基础,使在家中能够进行连续和长期监测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验