German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, 81377 Munich, Germany.
Schön Klinik Bad Aibling, 83043 Bad Aibling, Germany.
Sensors (Basel). 2024 Oct 4;24(19):6442. doi: 10.3390/s24196442.
Mobile health technologies enable continuous, quantitative assessment of mobility and gait in real-world environments, facilitating early diagnoses of gait disorders, disease progression monitoring, and prediction of adverse events like falls. Traditionally, mobile gait assessment predominantly relied on body-fixed sensors positioned at the feet or lower trunk. Here, we investigate the potential of an algorithm utilizing an ear-worn motion sensor for spatiotemporal segmentation of gait patterns. We collected 3D acceleration profiles from the ear-worn sensor during varied walking speeds in 53 healthy adults. Temporal convolutional networks were trained to detect stepping sequences and predict spatial relations between steps. The resulting algorithm, mEar, accurately detects initial and final ground contacts (F1 score of 99% and 91%, respectively). It enables the determination of temporal and spatial gait cycle characteristics (among others, stride time and stride length) with good to excellent validity at a precision sufficient to monitor clinically relevant changes in walking speed, stride-to-stride variability, and side asymmetry. This study highlights the ear as a viable site for monitoring gait and proposes its potential integration with in-ear vital-sign monitoring. Such integration offers a practical approach to comprehensive health monitoring and telemedical applications, by integrating multiple sensors in a single anatomical location.
移动健康技术能够在真实环境中连续、定量地评估移动性和步态,有助于早期诊断步态障碍、监测疾病进展以及预测跌倒等不良事件。传统上,移动步态评估主要依赖于固定在脚部或下躯干的身体传感器。在这里,我们研究了一种利用耳戴运动传感器进行步态模式时空分割的算法的潜力。我们在 53 名健康成年人中不同的行走速度下从耳戴传感器收集了 3D 加速度曲线。时间卷积网络被训练来检测步序并预测步序之间的空间关系。由此产生的算法 mEar 能够准确地检测初始和最终的地面接触(F1 分数分别为 99%和 91%)。它可以确定时间和空间步态周期特征(包括步时和步长),具有良好到极好的有效性,足以监测行走速度、步间变异性和侧不对称性等临床相关变化。这项研究强调了耳朵作为监测步态的可行部位,并提出了将其与内耳生命体征监测相结合的可能性。这种集成在单个解剖位置中集成多个传感器,为综合健康监测和远程医疗应用提供了一种实用的方法。