Suppr超能文献

使用腕部传感器进行现实世界步态速度估计:一种个性化方法。

Real-World Gait Speed Estimation Using Wrist Sensor: A Personalized Approach.

作者信息

Soltani Abolfazl, Dejnabadi Hooman, Savary Martin, Aminian Kamiar

出版信息

IEEE J Biomed Health Inform. 2020 Mar;24(3):658-668. doi: 10.1109/JBHI.2019.2914940. Epub 2019 May 6.

Abstract

Gait speed is an important parameter to characterize people's daily mobility. For real-world speed measurement, inertial sensors or global navigation satellite system (GNSS) can be used on wrist, possibly integrated in a wristwatch. However, power consumption of GNSS is high and data are only available outdoor. Gait speed estimation using wrist-mounted inertial sensors is generally based on machine learning and suffers from low accuracy because of the inadequacy of using limited training data to build a general speed model that would be accurate for the whole population. To overcome this issue, a personalized model was proposed, which took unique gait style of each subject into account. Cadence and other biomechanically derived gait features were extracted from a wrist-mounted accelerometer and barometer. Gait features were fused with few GNSS data (sporadically sampled during gait) to calibrate the step length model of each subject through online learning. The proposed method was validated on 30 healthy subjects where it has achieved a median [Interquartile Range] of root mean square error of 0.05 [0.04-0.06] (m/s) and 0.14 [0.11-0.17] (m/s) for walking and running, respectively. Results demonstrated that the personalized model provided similar performance as GNSS. It used 50 times less training GNSS data than nonpersonalized method and achieved even better results. This parsimonious GNSS usage allowed extending battery life. The proposed algorithm met requirements for applications which need accurate, long, real-time, low-power, and indoor/outdoor speed estimation in daily life.

摘要

步速是表征人们日常活动能力的一个重要参数。对于实际的速度测量,可以在手腕上使用惯性传感器或全球导航卫星系统(GNSS),可能集成在手表中。然而,GNSS的功耗很高,并且数据仅在室外可用。使用腕戴式惯性传感器进行步速估计通常基于机器学习,并且由于使用有限的训练数据来构建适用于整个人群的通用速度模型存在不足,导致准确性较低。为了克服这个问题,提出了一种个性化模型,该模型考虑了每个受试者独特的步态风格。从腕戴式加速度计和气压计中提取步频和其他生物力学衍生的步态特征。步态特征与少量GNSS数据(在步态期间偶尔采样)融合,通过在线学习校准每个受试者的步长模型。所提出的方法在30名健康受试者上进行了验证,其中步行和跑步的均方根误差中位数[四分位间距]分别为0.05[0.04 - 0.06](米/秒)和0.14[0.11 - 0.17](米/秒)。结果表明,个性化模型提供了与GNSS相似的性能。它使用的训练GNSS数据比非个性化方法少50倍,并且取得了更好的结果。这种对GNSS的节俭使用延长了电池寿命。所提出的算法满足了日常生活中需要准确、长期、实时、低功耗以及室内/室外速度估计的应用需求。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验