Suppr超能文献

一种因果中介方法来解释治疗和并发事件的相互作用:使用假设策略。

A Causal Mediation Approach to Account for Interaction of Treatment and Intercurrent Events: Using Hypothetical Strategy.

机构信息

Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China.

Center for Migrant Health Policy, Sun Yat-sen University, Guangzhou, China.

出版信息

Stat Med. 2024 Nov 10;43(25):4850-4860. doi: 10.1002/sim.10212. Epub 2024 Sep 5.

Abstract

Hypothetical strategy is a common strategy for handling intercurrent events (IEs). No current guideline or study considers treatment-IE interaction to target the estimand in any one IE-handling strategy. Based on the hypothetical strategy, we aimed to (1) assess the performance of three estimators with different considerations for the treatment-IE interaction in a simulation and (2) compare the estimation of these estimators in a real trial. Simulation data were generalized based on realistic clinical trials of Alzheimer's disease. The estimand of interest was the effect of treatment with no IE occurring under the hypothetical strategy. Three estimators, namely, G-estimation with and without interaction and IE-ignored estimation, were compared in scenarios where the treatment-IE interaction effect was set as -50% to 50% of the main effect. Bias was the key performance measure. The real case was derived from a randomized trial of methadone maintenance treatment. Only G-estimation with interaction exhibited unbiased estimations regardless of the existence, direction or magnitude of the treatment-IE interaction in those scenarios. Neglecting the interaction and ignoring the IE would introduce a bias as large as 0.093 and 0.241 (true value, -1.561) if the interaction effect existed. In the real case, compared with G-estimation with interaction, G-estimation without interaction and IE-ignored estimation increased the estimand of interest by 33.55% and 34.36%, respectively. This study highlights the importance of considering treatment-IE interaction in the estimand framework. In practice, it would be better to include the interaction in the estimator by default.

摘要

假设策略是处理并发事件 (IEs) 的常用策略。目前没有任何指南或研究考虑将治疗-IE 相互作用作为任何一种 IE 处理策略的目标来处理。基于假设策略,我们旨在 (1) 在模拟中评估三个具有不同治疗-IE 相互作用考虑的估计量的性能,以及 (2) 在真实试验中比较这些估计量的估计。模拟数据基于阿尔茨海默病的现实临床试验进行了推广。感兴趣的估计值是在假设策略下未发生 IE 时治疗的效果。在治疗-IE 相互作用效果设定为主要作用的 50%至 50%的情况下,比较了三种估计量,即带有和不带有交互作用的 G 估计量和忽略 IE 的估计量。偏差是关键性能指标。真实案例源自美沙酮维持治疗的随机试验。只有在这些情况下,无论治疗-IE 相互作用的存在、方向或大小如何,带有交互作用的 G 估计量都表现出无偏估计。忽略交互作用和忽略 IE 将导致偏差,大小分别为 0.093 和 0.241(真实值为-1.561),如果存在交互作用效果。在真实案例中,与带有交互作用的 G 估计量相比,不带交互作用的 G 估计量和忽略 IE 的估计量分别将感兴趣的估计值增加了 33.55%和 34.36%。本研究强调了在估计量框架中考虑治疗-IE 相互作用的重要性。在实践中,最好默认将交互作用包含在估计量中。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验