Suppr超能文献

用于提高效率和稳定性的钙钛矿太阳能电池中的光子转移与捕获

Photon shifting and trapping in perovskite solar cells for improved efficiency and stability.

作者信息

Haque Sirazul, Alexandre Miguel, Vicente António T, Li Kezheng, Schuster Christian S, Yang Sui, Águas Hugo, Martins Rodrigo, Ferreira Rute A S, Mendes Manuel J

机构信息

CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University of Lisbon and CEMOP/UNINOVA, Campus de Caparica, Caparica, Portugal.

Department of Physics and CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal.

出版信息

Light Sci Appl. 2024 Sep 5;13(1):238. doi: 10.1038/s41377-024-01559-2.

Abstract

Advanced light management techniques can enhance the sunlight absorption of perovskite solar cells (PSCs). When located at the front, they may act as a UV barrier, which is paramount for protecting the perovskite layer against UV-enabled degradation. Although it was recently shown that photonic structures such as Escher-like patterns could approach the theoretical Lambertian-limit of light trapping, it remains challenging to also implement UV protection properties for these diffractive structures while maintaining broadband absorption gains. Here, we propose a checkerboard (CB) tile pattern with designated UV photon conversion capability. Through a combined optical and electrical modeling approach, this photonic structure can increase photocurrent and power conversion efficiency in ultrathin PSCs by 25.9% and 28.2%, respectively. We further introduce a luminescent down-shifting encapsulant that converts the UV irradiation into Visible photons matching the solar cell absorption spectrum. To this end, experimentally obtained absorption and emission profiles of state-of-the-art down-shifting materials (i.e., lanthanide-based organic-inorganic hybrids) are used to predict potential gains from harnessing the UV energy. We demonstrate that at least 94% of the impinging UV radiation can be effectively converted into the Visible spectral range. Photonic protection from high-energy photons contributes to the market deployment of perovskite solar cell technology, and may become crucial for Space applications under AM0 illumination. By combining light trapping with luminescent downshifting layers, this work unravels a potential photonic solution to overcome UV degradation in PSCs while circumventing optical losses in ultrathin cells, thus improving both performance and stability.

摘要

先进的光管理技术可以提高钙钛矿太阳能电池(PSC)对阳光的吸收。当位于电池正面时,它们可以充当紫外线屏障,这对于保护钙钛矿层免受紫外线导致的降解至关重要。尽管最近有研究表明,诸如埃舍尔式图案等光子结构可以接近光捕获的理论朗伯极限,但要在保持宽带吸收增益的同时,为这些衍射结构实现紫外线防护性能仍然具有挑战性。在此,我们提出一种具有指定紫外线光子转换能力的棋盘(CB)图案。通过光学和电学相结合的建模方法,这种光子结构可以使超薄PSC中的光电流和功率转换效率分别提高25.9%和28.2%。我们还引入了一种发光向下转换封装材料,它可以将紫外线辐射转换为与太阳能电池吸收光谱相匹配的可见光光子。为此,利用最先进的向下转换材料(即镧系有机-无机杂化物)的实验获得的吸收和发射光谱来预测利用紫外线能量的潜在增益。我们证明,至少94%的入射紫外线辐射可以有效地转换为可见光谱范围。对高能光子的光子防护有助于钙钛矿太阳能电池技术的市场推广,并且对于AM0光照下的太空应用可能至关重要。通过将光捕获与发光向下转换层相结合,这项工作揭示了一种潜在的光子解决方案,以克服PSC中的紫外线降解,同时避免超薄电池中的光学损失,从而提高性能和稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ece/11377431/0a6650987ce2/41377_2024_1559_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验