Suppr超能文献

用于减少钙钛矿太阳能电池能量损失的光子管理

Photon management to reduce energy loss in perovskite solar cells.

作者信息

Chen Cong, Zheng Shijian, Song Hongwei

机构信息

School of Material Science and Engineering, State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Dingzigu Road 1, Tianjin 300130, People's Republic of China.

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China.

出版信息

Chem Soc Rev. 2021 Jun 21;50(12):7250-7329. doi: 10.1039/d0cs01488e.

Abstract

Despite the rapid development of perovskite solar cells (PSCs) over the past few years, the conversion of solar energy into electricity is not efficient enough or cost-competitive yet. The principal energy loss in the conversion of solar energy to electricity fundamentally originates from the non-absorption of low-energy photons ascribed to Shockley-Queisser limits and thermalization losses of high-energy photons. Enhancing the light-harvesting efficiency of the perovskite photoactive layer by developing efficient photo management strategies with functional materials and arrays remains a long-standing challenge. Here, we briefly review the historical research trials and future research trends to overcome the fundamental loss mechanisms in PSCs, including upconversion, downconversion, scattering, tandem/graded structures, texturing, anti-reflection, and luminescent solar concentrators. We will deeply emphasize the availability and analyze the importance of a fine device structure, fluorescence efficiency, material proportion, and integration position for performance improvement. The unique energy level structure arising from the 4fn inner shell configuration of the trivalent rare-earth ions gives multifarious options for efficient light-harvesting by upconversion and downconversion. Tandem or graded PSCs by combining a series of subcells with varying bandgaps seek to rectify the spectral mismatch. Plasmonic nanostructures function as a secondary light source to augment the light-trapping within the perovskite layer and carrier transporting layer, enabling enhanced carrier generation. Texturing the interior using controllable micro/nanoarrays can realize light-matter interactions. Anti-reflective coatings on the top glass cover of the PSCs bring about better transmission and glare reduction. Photon concentration through perovskite-based luminescent solar concentrators offers a path to increase efficiency at reduced cost and plays a role in building-integrated photovoltaics. Distinct from other published reviews, we here systematically and hierarchically present all of the photon management strategies in PSCs by presenting the theoretical possibilities and summarizing the experimental results, expecting to inspire future research in the field of photovoltaics, phototransistors, photoelectrochemical sensors, photocatalysis, and especially light-emitting diodes. We further assess the overall possibilities of the strategies based on ultimate efficiency prospects, material requirements, and developmental outlook.

摘要

尽管在过去几年中钙钛矿太阳能电池(PSCs)发展迅速,但将太阳能转化为电能的效率仍不够高,成本竞争力也不足。太阳能转化为电能过程中的主要能量损失,从根本上来说源于低能光子因肖克利 - 奎塞尔极限而未被吸收,以及高能光子的热化损失。通过使用功能材料和阵列开发高效的光管理策略来提高钙钛矿光活性层的光捕获效率,仍然是一个长期存在的挑战。在此,我们简要回顾克服PSC中基本损失机制的历史研究尝试和未来研究趋势,包括上转换、下转换、散射、串联/梯度结构、纹理化、抗反射以及发光太阳能聚光器。我们将着重强调良好器件结构、荧光效率、材料比例和集成位置对于性能提升的可行性,并分析其重要性。三价稀土离子的4fn内壳层构型产生的独特能级结构,为通过上转换和下转换实现高效光捕获提供了多种选择。通过组合一系列具有不同带隙的子电池形成的串联或梯度PSC,旨在纠正光谱失配。等离子体纳米结构作为二次光源,可增强钙钛矿层和载流子传输层内的光捕获,从而提高载流子产生。使用可控的微/纳米阵列对内部进行纹理化处理可实现光与物质的相互作用。PSC顶部玻璃盖上的抗反射涂层可实现更好的透射并减少眩光。基于钙钛矿的发光太阳能聚光器进行光子聚光,为以降低成本提高效率提供了一条途径,并在建筑一体化光伏中发挥作用。与其他已发表的综述不同,我们在此通过展示理论可能性并总结实验结果,系统且分层地呈现PSC中的所有光子管理策略,期望能激发光伏、光电晶体管、光电化学传感器、光催化以及特别是发光二极管领域的未来研究。我们还基于最终效率前景、材料要求和发展前景评估了这些策略的总体可行性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验