Suppr超能文献

脂质纳米粒药物释放的比较数学分析。

A Comparative Mathematical Analysis of Drug Release from Lipid-Based Nanoparticles.

机构信息

Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran.

Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.

出版信息

AAPS PharmSciTech. 2024 Sep 5;25(7):208. doi: 10.1208/s12249-024-02922-7.

Abstract

Mathematical modeling of drug release from drug delivery systems is crucial for understanding and optimizing formulations. This research provides a comparative mathematical analysis of drug release from lipid-based nanoparticles. Drug release profiles from various types of lipid nanoparticles, including liposomes, nanostructured lipid carriers (NLCs), solid lipid nanoparticles (SLNs), and nano/micro-emulsions (NEMs/MEMs), were extracted from the literature and used to assess the suitability of eight conventional mathematical release models. For each dataset, several metrics were calculated, including the coefficient of determination (R), adjusted R, the number of errors below certain thresholds (5%, 10%, 12%, and 20%), Akaike information criterion (AIC), regression sum square (RSS), regression mean square (RMS), residual sum of square (rSS), and residual mean square (rMS). The Korsmeyer-Peppas model ranked highest among the evaluated models, with the highest adjusted R values of 0.95 for NLCs and 0.93 for other liposomal drug delivery systems. The Weibull model ranked second, with adjusted R values of 0.92 for liposomal systems, 0.94 for SLNs, and 0.82 for NEMs/MEMs. Thus, these two models appear to be more effective in forecasting and characterizing the release of lipid nanoparticle drugs, potentially making them more suitable for upcoming research endeavors.

摘要

药物释放的数学建模对于理解和优化制剂至关重要。本研究对基于脂质的药物传递系统中的药物释放进行了比较性的数学分析。从文献中提取了各种类型的脂质纳米粒子(包括脂质体、纳米结构脂质载体(NLCs)、固体脂质纳米粒子(SLNs)和纳米/微乳液(NEMs/MEMs))的药物释放曲线,并利用这八种常规数学释放模型对其进行了评估。针对每个数据集,计算了多个指标,包括决定系数(R)、调整 R、低于特定阈值(5%、10%、12%和 20%)的误差数、赤池信息量准则(AIC)、回归平方和(RSS)、回归均方根(RMS)、残差平方和(rSS)和残差均方根(rMS)。在评估的模型中,Korsmeyer-Peppas 模型排名最高,其调整后的 R 值对 NLCs 为 0.95,对其他脂质体药物传递系统为 0.93。Weibull 模型排名第二,对脂质体系统的调整后的 R 值为 0.92,对 SLNs 为 0.94,对 NEMs/MEMs 为 0.82。因此,这两种模型似乎更有效地预测和描述了脂质纳米粒子药物的释放,这可能使它们更适合未来的研究工作。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验