Suppr超能文献

血红蛋白浓度降低可可靠检测急诊科呼吸困难患者的静水压性肺水肿——一种机器学习方法。

Decrease of haemoconcentration reliably detects hydrostatic pulmonary oedema in dyspnoeic patients in the emergency department - a machine learning approach.

作者信息

Gavelli Francesco, Castello Luigi Mario, Monnet Xavier, Azzolina Danila, Nerici Ilaria, Priora Simona, Via Valentina Giai, Bertoli Matteo, Foieni Claudia, Beltrame Michela, Bellan Mattia, Sainaghi Pier Paolo, De Vita Nello, Patrucco Filippo, Teboul Jean-Louis, Avanzi Gian Carlo

机构信息

Department of Translational Medicine, Università degli Studi del Piemonte Orientale, Via Solaroli 17, Novara, 28100, Italy.

Emergency Medicine Department, AOU Maggiore della Carità di Novara, C.so Mazzini 18, Novara, 28100, Italy.

出版信息

Int J Emerg Med. 2024 Sep 5;17(1):114. doi: 10.1186/s12245-024-00698-y.

Abstract

BACKGROUND

Haemoglobin variation (ΔHb) induced by fluid transfer through the intestitium has been proposed as a useful tool for detecting hydrostatic pulmonary oedema (HPO). However, its use in the emergency department (ED) setting still needs to be determined.

METHODS

In this observational retrospective monocentric study, ED patients admitted for acute dyspnoea were enrolled. Hb values were recorded both at ED presentation (T) and after 4 to 8 h (T). ΔHb between T and T (ΔHb) was calculated as absolute and relative value. Two investigators, unaware of Hb values, defined the cause of dyspnoea as HPO and non-HPO. ΔHb ability to detect HPO was evaluated. A machine learning approach was used to develop a predictive tool for HPO, by considering the ability of ΔHb as covariate, together with baseline patient characteristics.

RESULTS

Seven-hundred-and-six dyspnoeic patients (203 HPO and 503 non-HPO) were enrolled over 19 months. Hb levels were significantly different between HPO and non-HPO patients both at T and T (p < 0.001). ΔHb were more pronounced in HPO than non-HPO patients, both as relative (-8.2 [-11.2 to -5.6] vs. 0.6 [-2.1 to 3.3] %) and absolute (-1.0 [-1.4 to -0.8] vs. 0.1 [-0.3 to 0.4] g/dL) values (p < 0.001). A relative ΔHb of -5% detected HPO with an area under the receiver operating characteristic curve (AUROC) of 0.901 [0.896-0.906]. Among the considered models, Gradient Boosting Machine showed excellent predictive ability in identifying HPO patients and was used to create a web-based application. ΔHb was confirmed as the most important covariate for HPO prediction.

CONCLUSIONS

ΔHb in patients admitted for acute dyspnoea reliably identifies HPO in the ED setting. The machine learning predictive tool may represent a performing and clinically handy tool for confirming HPO.

摘要

背景

通过肠道液体转移引起的血红蛋白变化(ΔHb)已被提议作为检测静水压性肺水肿(HPO)的有用工具。然而,其在急诊科(ED)环境中的应用仍有待确定。

方法

在这项观察性回顾性单中心研究中,纳入了因急性呼吸困难入院的ED患者。在ED就诊时(T)和4至8小时后(T)记录血红蛋白值。计算T和T之间的ΔHb(ΔHb)的绝对值和相对值。两名不了解血红蛋白值的研究人员将呼吸困难的原因定义为HPO和非HPO。评估ΔHb检测HPO的能力。通过将ΔHb的能力作为协变量,并结合患者的基线特征,使用机器学习方法开发了一种用于HPO的预测工具。

结果

在19个月内纳入了706例呼吸困难患者(203例HPO和503例非HPO)。在T和T时,HPO患者与非HPO患者的血红蛋白水平均有显著差异(p < 0.001)。无论是相对值(-8.2 [-11.2至-5.6]%对0.6 [-2.1至3.3]%)还是绝对值(-1.0 [-1.4至-0.8] g/dL对0.1 [-0.3至0.4] g/dL),HPO患者的ΔHb均比非HPO患者更明显(p < 0.001)。相对ΔHb为-5%时检测HPO的受试者工作特征曲线下面积(AUROC)为0.901 [0.896 - 0.906]。在所考虑的模型中,梯度提升机在识别HPO患者方面表现出优异的预测能力,并被用于创建一个基于网络的应用程序。ΔHb被确认为HPO预测中最重要的协变量。

结论

因急性呼吸困难入院患者的ΔHb在ED环境中能够可靠地识别HPO。机器学习预测工具可能是一种用于确认HPO的有效且临床便捷的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4911/11375861/b7e3e761ef6c/12245_2024_698_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验