Suppr超能文献

口腔鳞状细胞癌预后风险特征的识别与验证

Identification and Verification of a Prognostic Risk Signature in Oral Squamous Cell Carcinoma.

作者信息

Chen Rishou, Duan Junlin, Ye Yonglong, Xu Huan, Ding Yali, Liu Jun

机构信息

Laboratory Medicine, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, China.

出版信息

Curr Top Med Chem. 2024 Sep 5. doi: 10.2174/0115680266335055240828061128.

Abstract

INTRODUCTION

Oral squamous cell carcinoma (OSCC) is a prevalent malignant condition. This study aimed to investigate the role of mTORC1 signaling and develop a prognostic model for OSCC.

MATERIALS AND METHODS

The single-sample gene set enrichment analysis (ssGSEA) algorithm was utilized to calculate the Z-Score of Hallmarks in OSCC, followed by univariate Cox regression analysis to identify processes associated with prognosis. Weighted gene co-expression network analysis (WGCNA) was performed using transcriptomic data from the cancer genome atlas (TCGA) cohort to identify genes correlated with mTORC1 signaling. A six-gene prognostic model was constructed using multifactorial Cox regression analysis and validated using an external dataset.

RESULTS

The study uncovered a strong linkage between mTORC1, glycolysis, hypoxia, and the prognosis of OSCC. mTORC1 signaling emerged as the most significant risk factor, negatively impacting patient survival. Additionally, a six-gene prognostic risk score model was developed which provided a quantitative measure of patients' survival probabilities. Interestingly, within the context of these findings, TP53 gene mutations were predominantly observed in the high-risk group, potentially underlining the genetic complexity of this patient subgroup. Additionally, differential immune cell infiltration and an integrated nomogram were also reported.

CONCLUSION

This study highlights the importance of mTORC1 signaling in OSCC prognosis and presents a robust prognostic model for predicting patient outcomes.

摘要

引言

口腔鳞状细胞癌(OSCC)是一种常见的恶性疾病。本研究旨在探讨mTORC1信号通路的作用,并建立OSCC的预后模型。

材料与方法

采用单样本基因集富集分析(ssGSEA)算法计算OSCC中特征基因集的Z分数,随后进行单变量Cox回归分析以确定与预后相关的过程。使用来自癌症基因组图谱(TCGA)队列的转录组数据进行加权基因共表达网络分析(WGCNA),以鉴定与mTORC1信号通路相关的基因。使用多因素Cox回归分析构建六基因预后模型,并使用外部数据集进行验证。

结果

该研究揭示了mTORC1、糖酵解、缺氧与OSCC预后之间的紧密联系。mTORC1信号通路成为最显著的危险因素,对患者生存产生负面影响。此外,还建立了一个六基因预后风险评分模型,该模型提供了患者生存概率的定量测量。有趣的是,在这些研究结果的背景下,TP53基因突变主要在高危组中观察到,这可能突出了该患者亚组的遗传复杂性。此外,还报告了不同的免疫细胞浸润情况和综合列线图。

结论

本研究强调了mTORC1信号通路在OSCC预后中的重要性,并提出了一个强大的预后模型来预测患者的预后。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验