Suppr超能文献

利用机器学习的混合 EWM-PROMETHEE II-DBSCAN 模型评估道路安全进展。

Gauging road safety advances using a hybrid EWM-PROMETHEE II-DBSCAN model with machine learning.

机构信息

College of Arts and Science, Vanderbilt University, Nashville, TN, United States.

School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States.

出版信息

Front Public Health. 2024 Aug 22;12:1413031. doi: 10.3389/fpubh.2024.1413031. eCollection 2024.

Abstract

INTRODUCTION

Enhancing road safety conditions alleviates socioeconomic hazards from traffic accidents and promotes public health. Monitoring progress and recalibrating measures are indispensable in this effort. A systematic and scientific decision-making model that can achieve defensible decision outputs with substantial reliability and stability is essential, particularly for road safety system analyses.

METHODS

We developed a systematic methodology combining the entropy weight method (EWM), preference ranking organization method for enrichment evaluation (PROMETHEE), and density-based spatial clustering of applications with noise (DBSCAN)-referred to as EWM-PROMETHEE II-DBSCAN-to support road safety monitoring, recalibrating measures, and action planning. Notably, we enhanced DBSCAN with a machine learning algorithm (grid search) to determine the optimal parameters of neighborhood radius and minimum number of points, significantly impacting clustering quality.

RESULTS

In a real case study assessing road safety in Southeast Asia, the multi-level comparisons validate the robustness of the proposed model, demonstrating its effectiveness in road safety decision-making. The integration of a machine learning tool (grid search) with the traditional DBSCAN clustering technique forms a robust framework, improving data analysis in complex environments. This framework addresses DBSCAN's limitations in nearest neighbor search and parameter selection, yielding more reliable decision outcomes, especially in small sample scenarios. The empirical results provide detailed insights into road safety performance and potential areas for improvement within Southeast Asia.

CONCLUSION

The proposed methodology offers governmental officials and managers a credible tool for monitoring overall road safety conditions. Furthermore, it enables policymakers and legislators to identify strengths and drawbacks and formulate defensible policies and strategies to optimize regional road safety.

摘要

简介

提高道路安全状况可以减轻交通事故带来的社会经济危害,促进公共健康。在这方面,监测进展和重新调整措施是必不可少的。需要一种系统和科学的决策模型,该模型可以用大量可靠且稳定的数据来实现合理的决策输出,特别是对于道路安全系统分析而言。

方法

我们开发了一种系统的方法,将熵权法(EWM)、偏好排序组织法(PROMETHEE)和基于密度的空间聚类应用程序(DBSCAN)相结合,称为 EWM-PROMETHEE II-DBSCAN,用于支持道路安全监测、重新调整措施和行动计划。值得注意的是,我们使用机器学习算法(网格搜索)增强了 DBSCAN,以确定邻域半径和最小点数的最佳参数,这对聚类质量有重大影响。

结果

在一个评估东南亚道路安全的实际案例研究中,多层次比较验证了所提出模型的稳健性,证明了其在道路安全决策中的有效性。将机器学习工具(网格搜索)与传统的 DBSCAN 聚类技术相结合形成了一个强大的框架,提高了复杂环境中的数据分析能力。该框架解决了 DBSCAN 在最近邻搜索和参数选择方面的局限性,产生了更可靠的决策结果,特别是在小样本情况下。实证结果提供了有关东南亚道路安全绩效和潜在改进领域的详细见解。

结论

该方法为政府官员和管理人员提供了一个可靠的工具,用于监测整体道路安全状况。此外,它使政策制定者和立法者能够识别优势和劣势,并制定合理的政策和战略,以优化区域道路安全。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10c4/11374619/d013d7acede9/fpubh-12-1413031-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验