The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
Nat Commun. 2023 Sep 13;14(1):5641. doi: 10.1038/s41467-023-41266-x.
Although structures of vitrified supramolecular complexes have been determined at near-atomic resolution, elucidating in situ molecular structure in living cells remains a challenge. Here, we report a straightforward liquid cell technique, originally developed for real-time visualization of dynamics at a liquid-gas interface using transmission electron microscopy, to image wet biological samples. Due to the scattering effects from the liquid phase, the micrographs display an amplitude contrast comparable to that observed in negatively stained samples. We succeed in resolving subunits within the protein complex GroEL imaged in a buffer solution at room temperature. Additionally, we capture various stages of virus cell entry, a process for which only sparse structural data exists due to their transient nature. To scrutinize the morphological details further, we used individual particle electron tomography for 3D reconstruction of each virus. These findings showcase this approach potential as an efficient, cost-effective complement to other microscopy technique in addressing biological questions at the molecular level.
尽管已确定玻璃化超分子配合物的结构达到近原子分辨率,但阐明活细胞内的原位分子结构仍然是一个挑战。在这里,我们报告了一种简单的液相细胞技术,该技术最初是为使用透射电子显微镜实时可视化气-液界面上的动力学而开发的,可用于对湿生物样品进行成像。由于液相的散射效应,显微照片显示出与在负染色样品中观察到的相当的振幅对比。我们成功地解析了在室温下在缓冲溶液中成像的蛋白质复合物 GroEL 中的亚基。此外,我们捕获了病毒细胞进入的各个阶段,由于其瞬态性质,仅存在少量的结构数据。为了进一步仔细检查形态细节,我们使用单个颗粒电子断层扫描术对每个病毒进行了 3D 重建。这些发现表明,该方法具有作为一种有效的、具有成本效益的补充手段的潜力,可以与其他显微镜技术一起解决分子水平上的生物学问题。