Suppr超能文献

一个独特的代谢基因簇调节酵母中的乳糖和半乳糖代谢。

A unique metabolic gene cluster regulates lactose and galactose metabolism in the yeast .

机构信息

Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden.

Wallenberg Wood Science Center, Chalmers University of Technology, Gothenburg, Sweden.

出版信息

Appl Environ Microbiol. 2024 Oct 23;90(10):e0113524. doi: 10.1128/aem.01135-24. Epub 2024 Sep 6.

Abstract

Lactose assimilation is a relatively rare trait in yeasts, and yeast species have long served as model organisms for studying lactose metabolism. Meanwhile, the metabolic strategies of most other lactose-assimilating yeasts remain unknown. In this work, we have elucidated the genetic determinants of the superior lactose-growing yeast . Through genomic and transcriptomic analyses, we identified three interdependent gene clusters responsible for the metabolism of lactose and its hydrolysis product galactose: the conserved cluster (, ) for lactose uptake and hydrolysis, the conserved cluster (, , and ) for galactose catabolism through the Leloir pathway, and a "" cluster containing the transcriptional activator gene , second copies of and , and a gene encoding an aldose reductase involved in carbon overflow metabolism. Bioinformatic analysis suggests that the cluster is unique to and has evolved through gene duplication and divergence, and deletion mutant phenotyping proved that the cluster is indispensable for growth on lactose and galactose. We also show that the regulatory network in , governed by Lac9 and Gal1 from the cluster, differs significantly from the galactose and lactose regulons in , , and . Moreover, although lactose and galactose metabolism are closely linked in , our results also point to important regulatory differences.IMPORTANCEThis study paves the way to a better understanding of lactose and galactose metabolism in the non-conventional yeast . Notably, the unique cluster represents a new, interesting example of metabolic network rewiring and likely helps to explain how has evolved into an efficient lactose-assimilating yeast. With the Leloir pathway of budding yeasts acting like a model system for understanding the function, evolution, and regulation of eukaryotic metabolism, this work provides new evolutionary insights into yeast metabolic pathways and regulatory networks. In extension, the results will facilitate future development and use of as a cell-factory for conversion of lactose-rich whey into value-added products.

摘要

乳糖同化是酵母中相对罕见的特征,酵母长期以来一直是研究乳糖代谢的模式生物。同时,大多数其他能同化乳糖的酵母的代谢策略仍然未知。在这项工作中,我们阐明了优势乳糖生长酵母的遗传决定因素。通过基因组和转录组分析,我们确定了三个相互依赖的基因簇,负责乳糖及其水解产物半乳糖的代谢:保守的 簇(,)负责乳糖的摄取和水解,保守的 簇(,,和)负责通过 Leloir 途径分解半乳糖,以及一个包含转录激活基因 ,,和 第二拷贝的“”簇,和一个编码参与碳溢出代谢的醛还原酶的 基因。生物信息学分析表明,簇是 所特有的,并且通过基因复制和分化进化而来,缺失突变表型证明该簇对于 生长在乳糖和半乳糖上是不可或缺的。我们还表明,调控网络,由 簇中的 Lac9 和 Gal1 调控,与 ,,和中的半乳糖和乳糖调控子有很大的不同。此外,尽管在 中乳糖和半乳糖代谢密切相关,但我们的结果也指出了重要的调控差异。

本研究为更好地理解非传统酵母中的乳糖和半乳糖代谢铺平了道路。值得注意的是,独特的 簇代表了代谢网络重新布线的一个新的、有趣的例子,可能有助于解释 是如何进化成一种高效的乳糖同化酵母的。由于芽殖酵母的 Leloir 途径作为理解真核代谢的功能、进化和调控的模型系统,这项工作为酵母代谢途径和调控网络提供了新的进化见解。此外,这些结果将有助于未来开发和利用 作为将富含乳糖的乳清转化为增值产品的细胞工厂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30f6/11497787/e9d0cabed052/aem.01135-24.f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验