Suppr超能文献

探索固定化酶系统中的非线性反应扩散:整数阶和分数阶建模

Exploring Nonlinear Reaction-Diffusion in Enzyme Immobilized Systems: Integer and Fractional Order Modeling.

作者信息

Rajaraman R

机构信息

Department of Mathematics, Saveetha Engineering College, Chennai, 602105, Tamil Nadu, India.

出版信息

Appl Biochem Biotechnol. 2025 Feb;197(2):793-820. doi: 10.1007/s12010-024-05050-x. Epub 2024 Sep 6.

Abstract

This paper presented a kinetic model of the Langmuir-Hinshelwood-Hougen-Watson (LHHW) type for porous catalysts with simple one-dimensional geometry, including spheres, infinite cylinders, and flat pellets. The model was applied to systems involving immobilized enzymes, where enzymes are attached to porous support materials to enhance stability and reusability. The LHHW model provided a tool for understanding and modeling reaction kinetics in heterogeneous porous catalysts and immobilized enzymes. A nonlinear reaction-diffusion equation was generated using finite-range Fickian diffusion and nonlinear reaction kinetics, crucial for accurately modeling the behavior of immobilized enzymes. This research addressed a gap in the existing literature by introducing fractional derivatives to investigate enzyme reaction kinetics, capturing the complex dynamics of substrate interaction and reaction rates within the porous matrix. An approximation method based on Lucas wavelets was employed to find solutions for substrate concentration and effectiveness factors across various parameter values. The analytical solutions derived from the Lucas wavelet method (LWM) were evaluated against the fourth-order Runge-Kutta method, showing great agreement between the LWM solutions and numerical counterparts. These results optimized diffusion and reaction kinetics, paving the way for advancements in biocatalysis and efficient enzyme reactor design.

摘要

本文提出了一种适用于具有简单一维几何形状的多孔催化剂(包括球体、无限长圆柱体和平板颗粒)的朗缪尔 - 欣谢尔伍德 - 霍根 - 沃森(LHHW)型动力学模型。该模型应用于涉及固定化酶的系统,其中酶附着在多孔载体材料上以提高稳定性和可重复使用性。LHHW模型为理解和模拟多相多孔催化剂及固定化酶中的反应动力学提供了一种工具。利用有限范围的菲克扩散和非线性反应动力学生成了一个非线性反应扩散方程,这对于准确模拟固定化酶的行为至关重要。本研究通过引入分数阶导数来研究酶反应动力学,填补了现有文献中的空白,捕捉了多孔基质内底物相互作用和反应速率的复杂动态。采用基于卢卡斯小波的近似方法来求解不同参数值下的底物浓度和有效因子。将从卢卡斯小波方法(LWM)得到的解析解与四阶龙格 - 库塔方法进行了评估,结果表明LWM解与数值解高度吻合。这些结果优化了扩散和反应动力学,为生物催化和高效酶反应器设计的进展铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验