Suppr超能文献

非细胞血液制品中严重急性呼吸综合征冠状病毒灭活方法的评估

Evaluation of inactivation methods for severe acute respiratory syndrome coronavirus in noncellular blood products.

作者信息

Darnell Miriam E R, Taylor Deborah R

机构信息

Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, Maryland, USA.

出版信息

Transfusion. 2006 Oct;46(10):1770-7. doi: 10.1111/j.1537-2995.2006.00976.x.

Abstract

BACKGROUND

Severe acute respiratory syndrome coronavirus (SARS-CoV) has been detected in the blood of infected individuals, which may have the potential to contaminate donated blood and plasma-derived products in the event of a future outbreak. Effective methods for inactivating the SARS-CoV in protein solutions are described in this report.

STUDY DESIGN AND METHODS

Heat, ultraviolet (UV) irradiation, octanoic acid, and solvent/detergent (S/D) methods were tested individually for their ability to inactivate SARS-CoV in protein solutions appropriately mimicking blood-derived products. Treated samples were tested for inactivation in a tissue culture growth assay.

RESULTS

Viral inactivation by heat treatment at 60 degrees C required 15 to 30 minutes to inactivate the SARS-CoV. UVC efficiently inactivated SARS-CoV in 40 minutes, whereas UVA required the addition of psoralen to enhance inactivation of the virus. The presence of bovine serum albumin limited the ability of UVC and UVA to inactivate SARS-CoV and octanoic acid treatment does not reduce the infectivity of SARS-CoV-spiked protein solutions. S/D treatment required 2, 4, and up to 24 hours for Triton X-100, Tween 80, and sodium cholate inactivation, respectively.

CONCLUSION

Heat, UVC irradiation, and S/D treatments effectively inactivate SARS-CoV, whereas octanoic acid treatment is insufficient for inactivation of the virus.

摘要

背景

在受感染个体的血液中已检测到严重急性呼吸综合征冠状病毒(SARS-CoV),在未来疫情爆发时,这可能有污染献血和血浆衍生产品的风险。本报告描述了在蛋白质溶液中灭活SARS-CoV的有效方法。

研究设计与方法

分别测试了加热、紫外线(UV)照射、辛酸和溶剂/去污剂(S/D)方法在适当模拟血液衍生产品的蛋白质溶液中灭活SARS-CoV的能力。在组织培养生长试验中对处理后的样品进行灭活测试。

结果

60℃热处理使SARS-CoV失活需要15至30分钟。UVC在40分钟内有效灭活SARS-CoV,而UVA需要添加补骨脂素以增强病毒的灭活效果。牛血清白蛋白的存在限制了UVC和UVA灭活SARS-CoV的能力,且辛酸处理不能降低添加了SARS-CoV的蛋白质溶液的感染性。S/D处理分别需要2小时、4小时和长达24小时才能使Triton X-100、吐温80和胆酸钠灭活。

结论

加热、UVC照射和S/D处理可有效灭活SARS-CoV,而辛酸处理不足以使病毒失活。

相似文献

4
Amotosalen and ultraviolet A light efficiently inactivate MERS-coronavirus in human platelet concentrates.
Transfus Med. 2019 Dec;29(6):434-441. doi: 10.1111/tme.12638. Epub 2019 Nov 6.
6
UV Inactivation of SARS-CoV-2 across the UVC Spectrum: KrCl* Excimer, Mercury-Vapor, and Light-Emitting-Diode (LED) Sources.
Appl Environ Microbiol. 2021 Oct 28;87(22):e0153221. doi: 10.1128/AEM.01532-21. Epub 2021 Sep 8.
7
Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV.
J Virol Methods. 2004 Oct;121(1):85-91. doi: 10.1016/j.jviromet.2004.06.006.
10
Viral Inactivation with Emphasis on SARS-CoV-2 Using Physical and Chemical Disinfectants.
ScientificWorldJournal. 2021 Oct 25;2021:9342748. doi: 10.1155/2021/9342748. eCollection 2021.

引用本文的文献

1
Studies on the Virucidal Effects of UV-C of 233 nm and 275 nm Wavelengths.
Viruses. 2024 Dec 11;16(12):1904. doi: 10.3390/v16121904.
2
Inflammatory Markers Predict Blood Neurofilament Light Chain Levels in Acute COVID-19 Patients.
Int J Mol Sci. 2024 Jul 29;25(15):8259. doi: 10.3390/ijms25158259.
3
Dissecting human population variation in single-cell responses to SARS-CoV-2.
Nature. 2023 Sep;621(7977):120-128. doi: 10.1038/s41586-023-06422-9. Epub 2023 Aug 9.
4
"Re-engineering of a food oven for thermal sanitization of Personal Protective Equipment against Sars-CoV-2 virus".
Sustain Futur. 2022;4:100093. doi: 10.1016/j.sftr.2022.100093. Epub 2022 Aug 12.
5
Water bath is more efficient than hot air oven at thermal inactivation of coronavirus.
Virol J. 2023 May 2;20(1):84. doi: 10.1186/s12985-023-02038-7.
8
A novel disinfected Trombe wall for space heating and virus inactivation: Concept and performance investigation.
Appl Energy. 2021 Jun 1;291:116789. doi: 10.1016/j.apenergy.2021.116789. Epub 2021 Mar 21.
9
Electrothermal sterilization and self-powered real-time respiratory monitoring of reusable mask based on Ag micro-mesh films.
Nano Energy. 2023 Jan;105:107987. doi: 10.1016/j.nanoen.2022.107987. Epub 2022 Nov 5.

本文引用的文献

1
Design of a UV-C irradiation process for the inactivation of viruses in protein solutions.
Biologicals. 2005 Jun;33(2):101-10. doi: 10.1016/j.biologicals.2005.02.001. Epub 2005 Apr 26.
2
Pathogen inactivation technology: cleansing the blood supply.
J Intern Med. 2005 Mar;257(3):224-37. doi: 10.1111/j.1365-2796.2005.01451.x.
3
Detection of severe acute respiratory syndrome coronavirus RNA in plasma during the course of infection.
J Clin Microbiol. 2005 Feb;43(2):962-5. doi: 10.1128/JCM.43.2.962-965.2005.
4
Chronological evolution of IgM, IgA, IgG and neutralisation antibodies after infection with SARS-associated coronavirus.
Clin Microbiol Infect. 2004 Dec;10(12):1062-6. doi: 10.1111/j.1469-0691.2004.01009.x.
5
Heat sensitivity of a SARS-associated coronavirus introduced into plasma products.
Vox Sang. 2004 Nov;87(4):302-3. doi: 10.1111/j.1423-0410.2004.00577.x.
6
Viral loads in clinical specimens and SARS manifestations.
Emerg Infect Dis. 2004 Sep;10(9):1550-7. doi: 10.3201/eid1009.040058.
7
Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV.
J Virol Methods. 2004 Oct;121(1):85-91. doi: 10.1016/j.jviromet.2004.06.006.
8
Neutralizing antibodies in patients with severe acute respiratory syndrome-associated coronavirus infection.
J Infect Dis. 2004 Sep 15;190(6):1119-26. doi: 10.1086/423286. Epub 2004 Aug 2.
9
Stability and inactivation of SARS coronavirus.
Med Microbiol Immunol. 2005 Jan;194(1-2):1-6. doi: 10.1007/s00430-004-0219-0.
10
Severe acute respiratory syndrome (SARS)--paradigm of an emerging viral infection.
J Clin Virol. 2004 Jan;29(1):13-22. doi: 10.1016/j.jcv.2003.09.011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验