Suppr超能文献

铜单原子电催化剂将二氧化碳高效选择性转化为甲烷

Highly Selective Conversion of Carbon Dioxide to Methane by Copper Single Atom Electrocatalysts.

作者信息

Liu Yixian, Zhang Mengling, Bao Kaili, Huang Hui, Kang Zhenhui

机构信息

Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, Macao SAR, 999078, China.

Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China.

出版信息

ChemSusChem. 2025 Feb 1;18(3):e202401314. doi: 10.1002/cssc.202401314. Epub 2024 Oct 29.

Abstract

Electrocatalytic carbon dioxide reduction into high-value chemicals is one of the important solutions to the greenhouse effect and energy crisis. However, the slow kinetic process of eight electrons requires the development of efficient catalysts to improve the yields. Single atom catalysts (SACs) with high activity and selectivity have become an emerging research frontier in the field of heterogeneous catalysis. Herein, a catalyst comprised of Cu single atoms loaded on carbon substrate (Cu-NC) is developed for highly selective electrocatalytic reduction of CO to methane (CH). The optimal catalyst (Cu-NC-1-4) exhibits a faradaic efficiency (FE) of over 50 % for CH within a wide potential window from -1.3 V to -1.8 V (vs. RHE) and the highest FE of CH is up to 67.22 % at -1.6 V (vs. RHE). Meanwhile, the product selectivity of CH among all the carbon products reaches 93.00 %, and the activity decay can be negligible via the 70-hour-stability-test. The existence of atomic dispersed Cu-N sites was verified by high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and X-ray absorption near edge structure (XANES). Density functional theory (DFT) calculations show that the effective adsorption of the key intermediate *CO on Cu-N sites prompts the generation of CH.

摘要

电催化二氧化碳还原为高价值化学品是解决温室效应和能源危机的重要途径之一。然而,八电子的缓慢动力学过程需要开发高效催化剂来提高产率。具有高活性和选择性的单原子催化剂(SACs)已成为多相催化领域新兴的研究前沿。在此,开发了一种由负载在碳基底上的铜单原子组成的催化剂(Cu-NC)用于将CO高效选择性电催化还原为甲烷(CH₄)。最佳催化剂(Cu-NC-1-4)在-1.3 V至-1.8 V(相对于可逆氢电极,RHE)的宽电位窗口内对CH₄的法拉第效率(FE)超过50%,在-1.6 V(相对于RHE)时CH₄的最高FE高达67.22%。同时,在所有碳产物中CH₄的产物选择性达到93.00%,并且通过70小时稳定性测试,活性衰减可忽略不计。通过高角度环形暗场扫描透射电子显微镜(HAADF-STEM)和X射线吸收近边结构(XANES)验证了原子分散的Cu-N位点的存在。密度泛函理论(DFT)计算表明,关键中间体*CO在Cu-N位点上的有效吸附促使了CH₄的生成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验