Suppr超能文献

二维氮化碳中的协同铜单原子催化剂用于增强将CO电解为甲烷

Cooperative Copper Single-Atom Catalyst in 2D Carbon Nitride for Enhanced CO Electrolysis to Methane.

作者信息

Roy Soumyabrata, Li Zhengyuan, Chen Zhiwen, Mata Astrid Campos, Kumar Pawan, Sarma Saurav Ch, Teixeira Ivo F, Silva Ingrid F, Gao Guanhui, Tarakina Nadezda V, Kibria Md Golam, Singh Chandra Veer, Wu Jingjie, Ajayan Pulickel M

机构信息

Department of Materials Science and Nano Engineering, Rice University, Houston, Texas, 77005, USA.

Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA.

出版信息

Adv Mater. 2024 Mar;36(13):e2300713. doi: 10.1002/adma.202300713. Epub 2024 Jan 6.

Abstract

Renewable-electricity-powered carbon dioxide (CO) reduction (eCOR) to high-value fuels like methane (CH) holds the potential to close the carbon cycle at meaningful scales. However, this kinetically staggered 8-electron multistep reduction suffers from inadequate catalytic efficiency and current density. Atomic Cu-structures can boost eCOR-to-CH selectivity due to enhanced intermediate binding energies (BEs) resulting from favorably shifted d-band centers. In this work, 2D carbon nitride (CN) matrices, viz. Na-polyheptazine (PHI) and Li-polytriazine imides (PTI), are exploited to host Cu-N type single-atom sites with high density (≈1.5 at%), via a facile metal-ion exchange process. Optimized Cu loading in nanocrystalline Cu-PTI maximizes eCOR-to-CH performance with Faradaic efficiency (FE) of ≈68% and a high partial current density of 348 mA cm at -0.84 V vs reversible hydrogen electrode (RHE), surpassing the state-of-the-art catalysts. Multi-Cu substituted N-appended nanopores in the CN frameworks yield thermodynamically stable quasi-dual/triple sites with large interatomic distances dictated by the pore dimensions. First-principles calculations elucidate the relative Cu-CN cooperative effects between the matrices and how the Cu local environment dictates the adsorbate BEs, density of states, and CO-to-CH energy profile landscape. The 9N pores in Cu-PTI yield cooperative Cu-Cu sites that synergistically enhance the kinetics of the rate-limiting steps in the eCOR-to-CH pathway.

摘要

利用可再生电力将二氧化碳(CO)还原为甲烷(CH)等高价值燃料,有望在有意义的规模上实现碳循环的闭合。然而,这种动力学上分步进行的8电子多步还原反应存在催化效率和电流密度不足的问题。原子级铜结构可以提高将CO还原为CH的选择性,这是由于d带中心的有利移动导致中间产物结合能(BEs)增强。在这项工作中,通过简便的金属离子交换过程,利用二维氮化碳(CN)基质,即钠聚庚嗪(PHI)和锂聚三嗪酰亚胺(PTI),来承载高密度(约1.5原子%)的Cu-N型单原子位点。纳米晶Cu-PTI中优化的铜负载量使将CO还原为CH的性能最大化,在相对于可逆氢电极(RHE)为-0.84 V时,法拉第效率(FE)约为68%,部分电流密度高达348 mA cm²,超过了目前的先进催化剂。CN框架中多铜取代的N端纳米孔产生了热力学稳定的准双/三位点,其原子间距离由孔尺寸决定。第一性原理计算阐明了基质之间相对的Cu-CN协同效应,以及Cu的局部环境如何决定吸附质的BEs、态密度和CO到CH的能量分布情况。Cu-PTI中的9N孔产生了协同的Cu-Cu位点,协同增强了将CO还原为CH途径中限速步骤的动力学。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验