Junior Professorship for Biocatalysis, Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, Aachen, 52074, Germany.
Microb Cell Fact. 2013 Oct 17;12:95. doi: 10.1186/1475-2859-12-95.
Cytochrome P450 monooxygenases--able to regio- and stereoselectively hydroxylate non-activated carbon atoms--are important enzymes for the synthesis of valuable intermediates in the production of steroid hormones in the pharmaceutical industry. However, up to now only a few bacterial enzymes able to hydroxylate steroids have been reported. CYP154C5 from Nocardia farcinica IFM 10152, a bacterial P450 monooxygenase, was previously shown to convert testosterone to 16α-hydroxytestosterone. Since the hydroxylation at 16α-position is of special interest for the pharmaceutical industry, we have studied this enzyme in more detail to investigate its activity and selectivity in bioconversions of further steroids.
CYP154C5 was coexpressed in Escherichia coli together with putidaredoxin and putidaredoxin reductase from Pseudomonas putida as redox partners for electron transfer and applied in bioconversions of various pregnanes and androstanes [pregnenolone (1), dehydroepiandrosterone (2), progesterone (3), androstenedione (4), testosterone (5) and nandrolone (6)]. Structure elucidation of the formed products revealed an exclusive regio- and stereoselectivity of CYP154C5, always yielding the corresponding 16α-hydroxylated steroids. Application of whole cells expressing the three components, P450, Pdx and PdR, in steroid biotransformations resulted in significantly higher conversions and total turnover numbers (TTN) compared to reactions using cell-free extracts. Additionally, considerably higher substrate loads (up to 15 mM) were tolerated by the whole-cell system. Furthermore, turnover numbers (TON) were determined for the six different steroids using whole cells. Thus, testosterone was found to be the worst substrate with a TON of only 0.8 μmol substrate consumed min-1 μmol(-1) CYP154C5, while progesterone and pregnenolone were converted the fastest resulting in TON of 3.3 μmol substrate consumed min(-1) μmol(-1) CYP154C5.
CYP154C5 from N. farcinica constitutes a promising catalyst due to its high regio- and stereoselectivity in the hydroxylation of different steroids as well as its efficient expression in E. coli at high yields. Using this enzyme, 16α-hydroxylated steroids, which are important precursors for the synthesis of high value steroidal drugs in the pharmaceutical industry, can be selectively produced on preparative scale with TTN (μmol substrate consumed μmol(-1) CYP154C5) exceeding 2000.
细胞色素 P450 单加氧酶——能够区域和立体选择性地将非活化碳原子羟化——是制药工业中甾体激素生产中有价值中间体合成的重要酶。然而,到目前为止,只有少数能够羟化甾体的细菌酶被报道。来自诺卡氏菌 IFM 10152 的细菌 P450 单加氧酶 CYP154C5 先前被证明可将睾酮转化为 16α-羟睾酮。由于 16α-位的羟化对制药工业具有特殊意义,因此我们更详细地研究了该酶,以研究其在进一步甾体生物转化中的活性和选择性。
CYP154C5 与来自假单胞菌的 putidaredoxin 和 putidaredoxin reductase 一起在大肠杆菌中共同表达,作为电子转移的氧化还原伴侣,并应用于各种孕烷和雄烷的生物转化[孕烯醇酮(1)、脱氢表雄酮(2)、孕酮(3)、雄烯二酮(4)、睾酮(5)和诺龙(6)]。形成产物的结构阐明表明 CYP154C5 具有独特的区域和立体选择性,总是生成相应的 16α-羟化甾体。使用表达三种成分(P450、Pdx 和 PdR)的全细胞进行甾体生物转化,与使用无细胞提取物的反应相比,转化率和总周转率(TTN)显著提高。此外,整个细胞系统可耐受高达 15 mM 的高底物负荷。此外,还使用整个细胞确定了六种不同甾体的周转数(TON)。因此,发现睾酮是最差的底物,TON 仅为 0.8 μmol 底物消耗 min-1 μmol(-1) CYP154C5,而孕酮和孕烯醇酮转化最快,TON 为 3.3 μmol 底物消耗 min(-1) μmol(-1) CYP154C5。
来自 N. farcinica 的 CYP154C5 由于其在不同甾体羟化中的高区域和立体选择性以及在大肠杆菌中的高效表达,产量高,因此是一种很有前途的催化剂。使用这种酶,可以在制备规模上选择性地生产重要的前体 16α-羟化甾体,用于制药工业中高价值甾体药物的合成,TON(μmol 底物消耗 μmol(-1) CYP154C5)超过 2000。