Suppr超能文献

儿童炎症综合征的无细胞血浆 RNA 特征。

Plasma cell-free RNA signatures of inflammatory syndromes in children.

机构信息

Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850.

Department of Laboratory Medicine, University of California, San Francisco, CA 94143.

出版信息

Proc Natl Acad Sci U S A. 2024 Sep 10;121(37):e2403897121. doi: 10.1073/pnas.2403897121. Epub 2024 Sep 6.

Abstract

Inflammatory syndromes, including those caused by infection, are a major cause of hospital admissions among children and are often misdiagnosed because of a lack of advanced molecular diagnostic tools. In this study, we explored the utility of circulating cell-free RNA (cfRNA) in plasma as an analyte for the differential diagnosis and characterization of pediatric inflammatory syndromes. We profiled cfRNA in 370 plasma samples from pediatric patients with a range of inflammatory conditions, including Kawasaki disease (KD), multisystem inflammatory syndrome in children (MIS-C), viral infections, and bacterial infections. We developed machine learning models based on these cfRNA profiles, which effectively differentiated KD from MIS-C-two conditions presenting with overlapping symptoms-with high performance [test area under the curve = 0.98]. We further extended this methodology into a multiclass machine learning framework that achieved 80% accuracy in distinguishing among KD, MIS-C, viral, and bacterial infections. We further demonstrated that cfRNA profiles can be used to quantify injury to specific tissues and organs, including the liver, heart, endothelium, nervous system, and the upper respiratory tract. Overall, this study identified cfRNA as a versatile analyte for the differential diagnosis and characterization of a wide range of pediatric inflammatory syndromes.

摘要

炎症综合征,包括由感染引起的炎症综合征,是导致儿童住院的主要原因,但由于缺乏先进的分子诊断工具,这些疾病经常被误诊。在这项研究中,我们探讨了循环无细胞 RNA(cfRNA)作为分析物在鉴别和描述儿科炎症综合征中的效用。我们对来自患有各种炎症性疾病的儿科患者的 370 个血浆样本中的 cfRNA 进行了分析,这些疾病包括川崎病(KD)、儿童多系统炎症综合征(MIS-C)、病毒感染和细菌感染。我们基于这些 cfRNA 图谱开发了机器学习模型,该模型能够以高性能(测试曲线下面积=0.98)有效地鉴别 KD 和 MIS-C——两种具有重叠症状的疾病。我们进一步将这种方法扩展到多类机器学习框架中,该框架在区分 KD、MIS-C、病毒和细菌感染方面达到了 80%的准确性。我们还证明了 cfRNA 图谱可用于定量特定组织和器官的损伤,包括肝脏、心脏、内皮、神经系统和上呼吸道。总的来说,这项研究确定了 cfRNA 作为鉴别和描述广泛儿科炎症综合征的一种多功能分析物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/200e/11406294/c2a74965aa52/pnas.2403897121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验