Suppr超能文献

健身模特能准确预测 SARS-CoV-2 变异株的流行频率。

Fitness models provide accurate short-term forecasts of SARS-CoV-2 variant frequency.

机构信息

Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America.

Department of Epidemiology, University of Washington, Seattle, Washington, United States of America.

出版信息

PLoS Comput Biol. 2024 Sep 6;20(9):e1012443. doi: 10.1371/journal.pcbi.1012443. eCollection 2024 Sep.

Abstract

Genomic surveillance of pathogen evolution is essential for public health response, treatment strategies, and vaccine development. In the context of SARS-COV-2, multiple models have been developed including Multinomial Logistic Regression (MLR) describing variant frequency growth as well as Fixed Growth Advantage (FGA), Growth Advantage Random Walk (GARW) and Piantham parameterizations describing variant Rt. These models provide estimates of variant fitness and can be used to forecast changes in variant frequency. We introduce a framework for evaluating real-time forecasts of variant frequencies, and apply this framework to the evolution of SARS-CoV-2 during 2022 in which multiple new viral variants emerged and rapidly spread through the population. We compare models across representative countries with different intensities of genomic surveillance. Retrospective assessment of model accuracy highlights that most models of variant frequency perform well and are able to produce reasonable forecasts. We find that the simple MLR model provides ∼0.6% median absolute error and ∼6% mean absolute error when forecasting 30 days out for countries with robust genomic surveillance. We investigate impacts of sequence quantity and quality across countries on forecast accuracy and conduct systematic downsampling to identify that 1000 sequences per week is fully sufficient for accurate short-term forecasts. We conclude that fitness models represent a useful prognostic tool for short-term evolutionary forecasting.

摘要

病原体进化的基因组监测对于公共卫生应对、治疗策略和疫苗开发至关重要。在 SARS-COV-2 的背景下,已经开发了多种模型,包括描述变体频率增长的多项逻辑回归(MLR),以及描述变体 Rt 的固定生长优势(FGA)、生长优势随机游走(GARW)和 Piantham 参数化。这些模型提供了变体适应性的估计值,并可用于预测变体频率的变化。我们引入了一个评估变体频率实时预测的框架,并将该框架应用于 2022 年 SARS-CoV-2 的进化,在此期间,多个新的病毒变体出现并迅速在人群中传播。我们比较了不同基因组监测强度的代表性国家的模型。对模型准确性的回顾性评估表明,大多数变体频率模型表现良好,能够产生合理的预测。我们发现,对于具有强大基因组监测的国家,简单的 MLR 模型在预测 30 天时提供了约 0.6%的中位数绝对误差和约 6%的平均绝对误差。我们研究了各国序列数量和质量对预测准确性的影响,并进行了系统地下采样,以确定每周 1000 个序列对于准确的短期预测是完全足够的。我们得出结论,适应性模型代表了短期进化预测的有用预后工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa68/11410224/255a5436abf4/pcbi.1012443.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验