Suppr超能文献

人工智能:改变非洲的心血管医疗保健

Artificial intelligence: transforming cardiovascular healthcare in Africa.

作者信息

Ashinze Patrick, Akande Eniola, Bethrand Chukwu, Obafemi Eniola, David Olafisoye-Oragbade Oluwatosin, Akobe Suleiman Nasiru, Joyce Ndubuisi Onyinyechukwu, Izuchukwu Obidiegwu Jonathan, Okoro Ngozi Peace

机构信息

Faculty of Clinical Sciences, University of Ilorin, Ilorin, Nigeria.

Chukwuemeka Odumegwu Ojukwu University Teaching Hospital, Anambra, Nigeria.

出版信息

Egypt Heart J. 2024 Sep 6;76(1):120. doi: 10.1186/s43044-024-00551-w.

Abstract

BACKGROUND

Cardiovascular diseases (CVDs), a significant global health concern, are responsible for 13% of all deaths particularly in Africa, where they contribute substantially to the global disease burden, taking several millions of lives globally and annually. Despite advancements in healthcare, the burden of CVDs continues to rise steadily. This comprehensive review critically examines the intersection of artificial intelligence (AI) and cardiovascular disease (CVD) management in Africa. Drawing on a diverse gamut of scholarly literature and empirical evidence, the review assesses the prevalence, impact, and challenges of CVDs in the African context.

MAIN BODY

The review highlights the potential of AI technologies to revolutionize CVD care, offering insights into its applications in diagnosis, treatment optimization, and remote patient monitoring. It explores existing literature sourced from databases like PUBMED, Scopus and Google Scholar about the current state of AI implementation in African healthcare systems, which are majorly resource-constrained, discussing successes, limitations, and future prospects. The work includes the prevalence and impact of CVDs in Africa, noting the significant public health burden and economic implications. Current challenges in addressing CVDs are outlined, focusing on resource constraints, healthcare system challenges, and socioeconomic factors. Our review takes a dive into AI's role in healthcare, emphasizing its capabilities in disease diagnosis, treatment optimization, and patient monitoring, and presents current applications and case studies of AI in African cardiovascular healthcare. It also addresses the challenges and limitations of implementing AI in this context, such as inadequate infrastructure, lack of high-quality data, and the need for regulatory frameworks.

CONCLUSION

Our review emphasizes the urgent need for collaborative efforts among policymakers, healthcare providers, and researchers to overcome barriers to AI integration and ensure equitable access to innovative healthcare solutions. By fetching existing research and offering practical recommendations, this review contributes to the academic discourse on AI-driven healthcare interventions in Africa, offering an understanding of the opportunities and challenges in leveraging technology to address pressing public health concerns. It calls for increased research, investment, and collaboration to harness AI's full potential in transforming cardiovascular healthcare in Africa.

摘要

背景

心血管疾病(CVDs)是全球重大的健康问题,占所有死亡人数的13%,在非洲尤其如此,它对全球疾病负担贡献巨大,每年在全球夺走数百万人的生命。尽管医疗保健取得了进步,但心血管疾病的负担仍在稳步上升。本综述全面审视了人工智能(AI)与非洲心血管疾病(CVD)管理的交叉领域。该综述借鉴了广泛的学术文献和实证证据,评估了非洲背景下心血管疾病的患病率、影响和挑战。

正文

该综述强调了人工智能技术在彻底改变心血管疾病护理方面的潜力,深入探讨了其在诊断、治疗优化和远程患者监测中的应用。它探索了从诸如PubMed、Scopus和谷歌学术等数据库获取的现有文献,内容涉及人工智能在非洲医疗系统中的实施现状,非洲医疗系统主要资源有限,讨论了成功之处、局限性和未来前景。该研究包括心血管疾病在非洲的患病率和影响,指出其重大的公共卫生负担和经济影响。概述了当前应对心血管疾病的挑战,重点关注资源限制、医疗系统挑战和社会经济因素。我们的综述深入探讨了人工智能在医疗保健中的作用,强调其在疾病诊断、治疗优化和患者监测方面的能力,并介绍了人工智能在非洲心血管医疗保健中的当前应用和案例研究。它还探讨了在这种背景下实施人工智能的挑战和局限性,如基础设施不足、缺乏高质量数据以及对监管框架的需求。

结论

我们的综述强调,政策制定者、医疗保健提供者和研究人员迫切需要共同努力,克服人工智能整合的障碍,确保公平获得创新的医疗保健解决方案。通过获取现有研究并提供实用建议,本综述为关于非洲人工智能驱动的医疗干预措施的学术讨论做出了贡献,有助于理解利用技术解决紧迫公共卫生问题的机遇和挑战。它呼吁加强研究、投资和合作,以充分发挥人工智能在改变非洲心血管医疗保健方面的潜力。

相似文献

4
Unraveling the Ethical Enigma: Artificial Intelligence in Healthcare.解开伦理谜团:医疗保健领域的人工智能
Cureus. 2023 Aug 10;15(8):e43262. doi: 10.7759/cureus.43262. eCollection 2023 Aug.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验