Suppr超能文献

一种用于腰椎旁肌精确分割的外部验证深度学习模型。

An externally validated deep learning model for the accurate segmentation of the lumbar paravertebral muscles.

机构信息

Center for Trauma Research Ulm, Institute of Orthopaedic Research and Biomechanics, Ulm University, Ulm, Germany.

Spine Center, Schulthess Clinic, Lengghalde 2, 8008, Zurich, Switzerland.

出版信息

Eur Spine J. 2022 Aug;31(8):2156-2164. doi: 10.1007/s00586-022-07320-w. Epub 2022 Jul 19.

Abstract

PURPOSE

Imaging studies about the relevance of muscles in spinal disorders, and sarcopenia in general, require the segmentation of the muscles in the images which is very labour-intensive if performed manually and poses a practical limit to the number of investigated subjects. This study aimed at developing a deep learning-based tool able to fully automatically perform an accurate segmentation of the lumbar muscles in axial MRI scans, and at validating the new tool on an external dataset.

METHODS

A set of 60 axial MRI images of the lumbar spine was retrospectively collected from a clinical database. Psoas major, quadratus lumborum, erector spinae, and multifidus were manually segmented in all available slices. The dataset was used to train and validate a deep neural network able to segment muscles automatically. Subsequently, the network was externally validated on images purposely acquired from 22 healthy volunteers.

RESULTS

The median Jaccard index for the individual muscles calculated for the 22 subjects of the external validation set ranged between 0.862 and 0.935, demonstrating a generally excellent performance of the network, although occasional failures were noted. Cross-sectional area and fat fraction of the muscles were in agreement with published data.

CONCLUSIONS

The externally validated deep neural network was able to perform the segmentation of the paravertebral muscles in an accurate and fully automated manner, although it is not without limitations. The model is therefore a suitable research tool to perform large-scale studies in the field of spinal disorders and sarcopenia, overcoming the limitations of non-automated methods.

摘要

目的

关于脊柱疾病中肌肉的相关性以及一般的肌肉减少症的影像学研究,需要对图像中的肌肉进行分割,如果手动进行,这非常耗费劳力,并且对研究对象的数量存在实际限制。本研究旨在开发一种基于深度学习的工具,能够全自动地对轴向 MRI 扫描中的腰椎肌肉进行精确分割,并在外部数据集上验证新工具。

方法

从临床数据库中回顾性收集了 60 套腰椎的轴向 MRI 图像。在所有可用的切片中手动分割腰大肌、竖脊肌、腰方肌和多裂肌。该数据集用于训练和验证一个能够自动分割肌肉的深度神经网络。随后,该网络在专门从 22 名健康志愿者获取的图像上进行了外部验证。

结果

对外部验证集的 22 名受试者的个别肌肉的中位数 Jaccard 指数进行计算,范围在 0.862 到 0.935 之间,表明网络的性能通常非常出色,尽管偶尔会出现失败。肌肉的横截面积和脂肪分数与已发表的数据一致。

结论

经过外部验证的深度神经网络能够以准确和全自动的方式对椎旁肌肉进行分割,尽管它并非没有限制。因此,该模型是一种适用于在脊柱疾病和肌肉减少症领域进行大规模研究的研究工具,克服了非自动化方法的局限性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验