School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
J Hazard Mater. 2024 Nov 5;479:135748. doi: 10.1016/j.jhazmat.2024.135748. Epub 2024 Sep 5.
A novel nitrate-dependent manganese (Mn) redox strain was isolated and identified as Dechloromonas sp.YZ8 in this study. The growth conditions of strain YZ8 were optimized by kinetic experiments. The nitrate (NO-N) removal efficiency was 100.0 % at 16 h at C/N of 2.0, pH of 7.0, and Mn(II) or Mn(IV) addition of 10.0 or 500.0 mg L, along with an excellent Mn redox capacity. Transmission electron microscopy supported the Mn redox process inside and outside the cells of strain YZ8. When strain YZ8 was exposed to different concentrations of copper ion (Cu(II)), it turned out that moderate amounts of Cu(II) increased microbial activity and metabolic activities. Moreover, it was discovered that the appropriate amount of Cu(II) promoted the conversion of Mn(IV) and Mn(II) to Mn(III) and improved electron transfer capacity in the Mn redox system, especially the Mn redox process dominated by Mn(IV) reduction. Then, δ-MnO and bio-manganese oxides (BMO) produced during the reaction process have strong adsorption of Cu(II). The surface valence changes of δ-MnO before and after the reaction and the production of BMO, Mn(III)-rich intermediate black manganese ore (MnO), and Mn secondary minerals together confirmed the Mn redox pathway. The study provided new insights into the promotion mechanism and immobilization effects of redox-coupled denitrification of Mn in groundwater under Cu(II) stress.
本研究从地下水中分离到一株硝酸盐依赖型锰(Mn)氧化还原菌,鉴定为脱氯单胞菌(Dechloromonas sp.)YZ8。通过动力学实验优化了菌株 YZ8 的生长条件。在 C/N 为 2.0、pH 为 7.0、Mn(II)或 Mn(IV)添加量为 10.0 或 500.0mg/L 时,菌株 YZ8 可在 16 小时内实现 100.0%的硝酸盐(NO-N)去除效率,且具有良好的 Mn 氧化还原能力。透射电子显微镜(TEM)支持了菌株 YZ8 细胞内外的 Mn 氧化还原过程。当菌株 YZ8 暴露于不同浓度的铜离子(Cu(II))时,适量的 Cu(II) 提高了微生物活性和代谢活性。此外,适量的 Cu(II) 促进了 Mn(IV)和 Mn(II)向 Mn(III)的转化,提高了 Mn 氧化还原体系中的电子传递能力,特别是由 Mn(IV)还原主导的 Mn 氧化还原过程。然后,反应过程中产生的 δ-MnO 和生物锰氧化物(BMO)对 Cu(II)具有很强的吸附能力。反应前后 δ-MnO 的表面价态变化以及 BMO、富 Mn(III)中间黑色锰矿(MnO)和 Mn 次生矿物的生成共同证实了 Mn 氧化还原途径。该研究为 Cu(II)胁迫下地下水 Mn 氧化还原耦合反硝化的促进机制和固定效应提供了新的见解。