Suppr超能文献

MassLite:一个集成的 Python 平台,用于单细胞质谱代谢组学数据的预处理,具有图形用户界面和先进的峰对齐方法。

MassLite: An integrated python platform for single cell mass spectrometry metabolomics data pretreatment with graphical user interface and advanced peak alignment method.

机构信息

Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA.

Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA.

出版信息

Anal Chim Acta. 2024 Oct 9;1325:343124. doi: 10.1016/j.aca.2024.343124. Epub 2024 Aug 20.

Abstract

Mass spectrometry (MS) has been one of the most widely used tools for bioanalytical analysis due to its high sensitivity, capability of quantitative analysis, and compatibility with biomolecules. Among various MS techniques, single cell mass spectrometry (SCMS) is an advanced approach to molecular analysis of cellular contents in individual cells. In tandem with the creation of novel experimental techniques, the development of new SCMS data analysis tools is equally important. As most published software packages are not specifically designed for pretreatment of SCMS data, including peak alignment and background removal, their applicability on processing SCMS data is generally limited. Hereby we introduce a Python platform, MassLite, specifically designed for rapid SCMS metabolomics data pretreatment. This platform is made user-friendly with graphical user interface (GUI) and exports data in the forms of each individual cell for further analysis. A core function of this tool is to use a novel peak alignment method that avoids the intrinsic drawbacks of traditional binning method, allowing for more effective handling of MS data obtained from high resolution mass spectrometers. Other functions, such as void scan filtering, dynamic grouping, and advanced background removal, are also implemented in this tool to improve pretreatment efficiency.

摘要

质谱 (MS) 因其高灵敏度、定量分析能力和与生物分子的兼容性,已成为生物分析中应用最广泛的工具之一。在各种 MS 技术中,单细胞质谱 (SCMS) 是一种对单个细胞内细胞内容物进行分子分析的先进方法。随着新的实验技术的不断涌现,新的 SCMS 数据分析工具的开发同样重要。由于大多数已发布的软件包并非专门针对 SCMS 数据的预处理而设计,包括峰对齐和背景去除,因此它们在处理 SCMS 数据方面的适用性通常受到限制。在此,我们介绍了一个 Python 平台 MassLite,它专门用于快速 SCMS 代谢组学数据预处理。该平台采用图形用户界面 (GUI) 设计,使操作更加简便,并以每个单个细胞的形式导出数据,以便进一步分析。该工具的核心功能是使用一种新颖的峰对齐方法,避免了传统分箱方法的固有缺陷,从而更有效地处理来自高分辨率质谱仪的 MS 数据。该工具还实现了其他功能,如空扫描过滤、动态分组和高级背景去除,以提高预处理效率。

相似文献

本文引用的文献

2
Advances in Mass Spectrometry-Based Single Cell Analysis.基于质谱的单细胞分析进展。
Biology (Basel). 2023 Mar 2;12(3):395. doi: 10.3390/biology12030395.
3
Single-cell proteomics: challenges and prospects.单细胞蛋白质组学:挑战与前景
Nat Methods. 2023 Mar;20(3):317-318. doi: 10.1038/s41592-023-01828-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验