Suppr超能文献

元表型:一种可转移的元学习模型,用于基于单细胞质谱法,利用有限数量的细胞进行细胞表型预测。

MetaPhenotype: A Transferable Meta-Learning Model for Single-Cell Mass Spectrometry-Based Cell Phenotype Prediction Using Limited Number of Cells.

作者信息

Yao Songyuan, Nguyen Tra D, Lan Yunpeng, Yang Wen, Chen Dan, Shao Yihan, Yang Zhibo

机构信息

Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States.

Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States.

出版信息

Anal Chem. 2024 Dec 10;96(49):19238-19247. doi: 10.1021/acs.analchem.4c02038. Epub 2024 Nov 21.

Abstract

Single-cell mass spectrometry (SCMS) is an emerging tool for studying cell heterogeneity according to variation of molecular species in single cells. Although it has become increasingly common to employ machine learning models in SCMS data analysis, such as the classification of cell phenotypes, the existing machine learning models often suffer from low adaptability and transferability. In addition, SCMS studies of rare cells can be restricted by limited number of cell samples. To overcome these limitations, we performed SCMS analyses of melanoma cancer cell lines with two phenotypes (i.e., primary and metastatic cells). We then developed a meta-learning-based model, MetaPhenotype, that can be trained using a small amount of SCMS data to accurately classify cells into primary or metastatic phenotypes. Our results show that compared with standard transfer learning models, MetaPhenotype can rapidly predict and achieve a high accuracy of over 90% with fewer new training samples. Overall, our work opens the possibility of accurate cell phenotype classification based on fewer SCMS samples, thus lowering the demand for sample acquisition.

摘要

单细胞质谱分析(SCMS)是一种新兴的工具,用于根据单细胞中分子种类的变化来研究细胞异质性。尽管在SCMS数据分析中使用机器学习模型(如细胞表型分类)已变得越来越普遍,但现有的机器学习模型往往适应性和可转移性较低。此外,对稀有细胞的SCMS研究可能会受到细胞样本数量有限的限制。为了克服这些限制,我们对具有两种表型(即原发性和转移性细胞)的黑色素瘤癌细胞系进行了SCMS分析。然后,我们开发了一种基于元学习的模型MetaPhenotype,该模型可以使用少量的SCMS数据进行训练,以将细胞准确分类为原发性或转移性表型。我们的结果表明,与标准迁移学习模型相比,MetaPhenotype可以快速预测并在使用更少的新训练样本的情况下实现超过90%的高精度。总体而言,我们的工作开启了基于更少的SCMS样本进行准确细胞表型分类的可能性,从而降低了对样本采集的需求。

相似文献

10
Single-cell metabolomics by mass spectrometry: ready for primetime?质谱单细胞代谢组学:准备好迎接黄金时代了吗?
Curr Opin Biotechnol. 2023 Aug;82:102963. doi: 10.1016/j.copbio.2023.102963. Epub 2023 Jun 23.

引用本文的文献

本文引用的文献

4
Web-based multi-omics integration using the Analyst software suite.基于网络的多组学整合使用 Analyst 软件套件。
Nat Protoc. 2024 May;19(5):1467-1497. doi: 10.1038/s41596-023-00950-4. Epub 2024 Feb 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验