College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, 434025, China.
Sichuan Academy of Forestry, Chengdu, Sichuan, 610081, China.
BMC Plant Biol. 2024 Sep 7;24(1):843. doi: 10.1186/s12870-024-05373-1.
Zanthoxylum is a versatile economic tree species utilized for its spice, seasoning, oil, medicinal, and industrial raw material applications, and it has a lengthy history of cultivation and domestication in China. This has led to the development of numerous cultivars. However, the phenomenon of mixed cultivars and confusing names has significantly obstructed the effective utilization of Zanthoxylum resources and industrial development. Consequently, conducting genetic diversity studies and cultivar identification on Zanthoxylum are crucial. This research analyzed the genetic traits of 80 Zanthoxylum cultivars using simple sequence repeat (SSR) and inter-Primer Binding Site (iPBS) molecular markers, leading to the creation of a DNA fingerprint. This study identified 206 and 127 alleles with 32 SSR markers and 10 iPBS markers, respectively, yielding an average of 6.4 and 12.7 alleles (Na) per marker. The average polymorphism information content (PIC) for the SSR and iPBS markers was 0.710 and 0.281, respectively. The genetic similarity coefficients for the 80 Zanthoxylum accessions ranged from 0.0947 to 0.9868 and from 0.2206 to 1.0000, with mean values of 0.3864 and 0.5215, respectively, indicating substantial genetic diversity. Cluster analysis, corroborated by principal coordinate analysis (PCoA), categorized these accessions into three primary groups. Analysis of the genetic differentiation among the three Zanthoxylum (Z. bungeanum, Z. armatum, and Z. piperitum) populations using SSR markers revealed a mean genetic differentiation coefficient (Fst) of 0.335 and a gene flow (Nm) of 0.629, suggesting significant genetic divergence among the populations. Molecular variance analysis (AMOVA) indicated that 65% of the genetic variation occurred within individuals, while 35% occurred among populations. Bayesian model-based analysis of population genetic structure divided all materials into two groups. The combined PI and PIsibs value of the 32 SSR markers were 4.265 × 10 and 1.282 × 10, respectively, showing strong fingerprinting power. DNA fingerprints of the 80 cultivars were established using eight pairs of SSR primers, each assigned a unique numerical code. In summary, while both markers were effective at assessing the genetic diversity and relationships of Zanthoxylum species, SSR markers demonstrated superior polymorphism and cultivar discrimination compared to iPBS markers. These findings offer a scientific foundation for the conservation and sustainable use of Zanthoxylum species.
花椒是一种用途广泛的经济树种,可用于香料、调味品、油、药用和工业原料,在中国有着悠久的栽培和驯化历史。这导致了许多品种的发展。然而,品种混杂和名称混乱的现象严重阻碍了花椒资源的有效利用和产业发展。因此,对花椒进行遗传多样性研究和品种鉴定至关重要。本研究利用简单重复序列(SSR)和引物结合位点间(iPBS)分子标记对 80 个花椒品种的遗传特性进行了分析,建立了 DNA 指纹图谱。本研究利用 32 个 SSR 标记和 10 个 iPBS 标记分别检测到 206 和 127 个等位基因,每个标记的平均等位基因数(Na)分别为 6.4 和 12.7。SSR 和 iPBS 标记的平均多态信息含量(PIC)分别为 0.710 和 0.281。80 个花椒品种的遗传相似系数范围为 0.0947 至 0.9868,平均值为 0.3864;范围为 0.2206 至 1.0000,平均值为 0.5215,表明遗传多样性较大。聚类分析和主坐标分析(PCoA)将这些品种分为三个主要组。利用 SSR 标记分析三个花椒(Z. bungeanum、Z. armatum 和 Z. piperitum)种群的遗传分化,结果表明平均遗传分化系数(Fst)为 0.335,基因流(Nm)为 0.629,表明种群间存在显著的遗传分化。分子方差分析(AMOVA)表明,65%的遗传变异发生在个体内部,35%发生在种群之间。贝叶斯基于模型的种群遗传结构分析将所有材料分为两组。32 个 SSR 标记的组合 PI 和 PIsibs 值分别为 4.265×10 和 1.282×10,表现出较强的指纹识别能力。利用 8 对 SSR 引物建立了 80 个品种的 DNA 指纹图谱,每个引物都分配了一个唯一的数字代码。综上所述,两种标记都能有效地评估花椒属物种的遗传多样性和关系,但 SSR 标记在多态性和品种鉴别方面优于 iPBS 标记。这些发现为花椒属物种的保护和可持续利用提供了科学依据。
Curr Issues Mol Biol. 2023-8-30
Mol Biol Rep. 2020-11
Food Chem X. 2025-5-2