文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 SSR 和 iPBS 标记的花椒属物种遗传多样性分析和 DNA 指纹图谱构建。

Genetic diversity analysis and DNA fingerprint construction of Zanthoxylum species based on SSR and iPBS markers.

机构信息

College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, 434025, China.

Sichuan Academy of Forestry, Chengdu, Sichuan, 610081, China.

出版信息

BMC Plant Biol. 2024 Sep 7;24(1):843. doi: 10.1186/s12870-024-05373-1.


DOI:10.1186/s12870-024-05373-1
PMID:39244564
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11380355/
Abstract

Zanthoxylum is a versatile economic tree species utilized for its spice, seasoning, oil, medicinal, and industrial raw material applications, and it has a lengthy history of cultivation and domestication in China. This has led to the development of numerous cultivars. However, the phenomenon of mixed cultivars and confusing names has significantly obstructed the effective utilization of Zanthoxylum resources and industrial development. Consequently, conducting genetic diversity studies and cultivar identification on Zanthoxylum are crucial. This research analyzed the genetic traits of 80 Zanthoxylum cultivars using simple sequence repeat (SSR) and inter-Primer Binding Site (iPBS) molecular markers, leading to the creation of a DNA fingerprint. This study identified 206 and 127 alleles with 32 SSR markers and 10 iPBS markers, respectively, yielding an average of 6.4 and 12.7 alleles (Na) per marker. The average polymorphism information content (PIC) for the SSR and iPBS markers was 0.710 and 0.281, respectively. The genetic similarity coefficients for the 80 Zanthoxylum accessions ranged from 0.0947 to 0.9868 and from 0.2206 to 1.0000, with mean values of 0.3864 and 0.5215, respectively, indicating substantial genetic diversity. Cluster analysis, corroborated by principal coordinate analysis (PCoA), categorized these accessions into three primary groups. Analysis of the genetic differentiation among the three Zanthoxylum (Z. bungeanum, Z. armatum, and Z. piperitum) populations using SSR markers revealed a mean genetic differentiation coefficient (Fst) of 0.335 and a gene flow (Nm) of 0.629, suggesting significant genetic divergence among the populations. Molecular variance analysis (AMOVA) indicated that 65% of the genetic variation occurred within individuals, while 35% occurred among populations. Bayesian model-based analysis of population genetic structure divided all materials into two groups. The combined PI and PIsibs value of the 32 SSR markers were 4.265 × 10 and 1.282 × 10, respectively, showing strong fingerprinting power. DNA fingerprints of the 80 cultivars were established using eight pairs of SSR primers, each assigned a unique numerical code. In summary, while both markers were effective at assessing the genetic diversity and relationships of Zanthoxylum species, SSR markers demonstrated superior polymorphism and cultivar discrimination compared to iPBS markers. These findings offer a scientific foundation for the conservation and sustainable use of Zanthoxylum species.

摘要

花椒是一种用途广泛的经济树种,可用于香料、调味品、油、药用和工业原料,在中国有着悠久的栽培和驯化历史。这导致了许多品种的发展。然而,品种混杂和名称混乱的现象严重阻碍了花椒资源的有效利用和产业发展。因此,对花椒进行遗传多样性研究和品种鉴定至关重要。本研究利用简单重复序列(SSR)和引物结合位点间(iPBS)分子标记对 80 个花椒品种的遗传特性进行了分析,建立了 DNA 指纹图谱。本研究利用 32 个 SSR 标记和 10 个 iPBS 标记分别检测到 206 和 127 个等位基因,每个标记的平均等位基因数(Na)分别为 6.4 和 12.7。SSR 和 iPBS 标记的平均多态信息含量(PIC)分别为 0.710 和 0.281。80 个花椒品种的遗传相似系数范围为 0.0947 至 0.9868,平均值为 0.3864;范围为 0.2206 至 1.0000,平均值为 0.5215,表明遗传多样性较大。聚类分析和主坐标分析(PCoA)将这些品种分为三个主要组。利用 SSR 标记分析三个花椒(Z. bungeanum、Z. armatum 和 Z. piperitum)种群的遗传分化,结果表明平均遗传分化系数(Fst)为 0.335,基因流(Nm)为 0.629,表明种群间存在显著的遗传分化。分子方差分析(AMOVA)表明,65%的遗传变异发生在个体内部,35%发生在种群之间。贝叶斯基于模型的种群遗传结构分析将所有材料分为两组。32 个 SSR 标记的组合 PI 和 PIsibs 值分别为 4.265×10 和 1.282×10,表现出较强的指纹识别能力。利用 8 对 SSR 引物建立了 80 个品种的 DNA 指纹图谱,每个引物都分配了一个唯一的数字代码。综上所述,两种标记都能有效地评估花椒属物种的遗传多样性和关系,但 SSR 标记在多态性和品种鉴别方面优于 iPBS 标记。这些发现为花椒属物种的保护和可持续利用提供了科学依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79cb/11380355/d985999a64e7/12870_2024_5373_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79cb/11380355/6bf156664d32/12870_2024_5373_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79cb/11380355/2b7c72541461/12870_2024_5373_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79cb/11380355/cee1a55a87a3/12870_2024_5373_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79cb/11380355/65ed0549ab1a/12870_2024_5373_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79cb/11380355/f44f3be366d8/12870_2024_5373_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79cb/11380355/caaa3ca9680d/12870_2024_5373_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79cb/11380355/70747918e794/12870_2024_5373_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79cb/11380355/d985999a64e7/12870_2024_5373_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79cb/11380355/6bf156664d32/12870_2024_5373_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79cb/11380355/2b7c72541461/12870_2024_5373_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79cb/11380355/cee1a55a87a3/12870_2024_5373_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79cb/11380355/65ed0549ab1a/12870_2024_5373_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79cb/11380355/f44f3be366d8/12870_2024_5373_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79cb/11380355/caaa3ca9680d/12870_2024_5373_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79cb/11380355/70747918e794/12870_2024_5373_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79cb/11380355/d985999a64e7/12870_2024_5373_Fig8_HTML.jpg

相似文献

[1]
Genetic diversity analysis and DNA fingerprint construction of Zanthoxylum species based on SSR and iPBS markers.

BMC Plant Biol. 2024-9-7

[2]
Six Express Sequence Tag-Simple Sequence Repeat Primers Reveal Genetic Diversity in the Cultivars of Three Species.

Curr Issues Mol Biol. 2023-8-30

[3]
Genome survey of Zanthoxylum bungeanum and development of genomic-SSR markers in congeneric species.

Biosci Rep. 2020-6-26

[4]
Genetic Diversity Analysis and Fingerprint Construction for 87 Passionfruit ( spp.) Germplasm Accessions on the Basis of SSR Fluorescence Markers.

Int J Mol Sci. 2024-10-8

[5]
SSR molecular marker developments and genetic diversity analysis of Zanthoxylum nitidum (Roxb.) DC.

Sci Rep. 2023-11-26

[6]
Microsatellite DNA and RAPD fingerprinting, identification and genetic relationships of hybrid poplar (Populus x canadensis) cultivars.

Theor Appl Genet. 2003-2

[7]
Fingerprint identification of white clover cultivars based on SSR molecular markers.

Mol Biol Rep. 2020-11

[8]
Exploring genetic diversity and Population structure of five Aegilops species with inter-primer binding site (iPBS) markers.

Mol Biol Rep. 2022-9

[9]
Genetic analysis and molecular characterization of Chinese sesame (Sesamum indicum L.) cultivars using insertion-deletion (InDel) and simple sequence repeat (SSR) markers.

BMC Genet. 2014-3-19

[10]
Development of EST-SSR markers in and their applicability in studying the genetic diversity and cross-species transferability.

J Genet. 2019-11

引用本文的文献

[1]
Construction of a core collection and SNP fingerprinting database for Chinese chive () through Hyper-seq based population genetic analysis.

Front Plant Sci. 2025-7-16

[2]
Genetic diversity, population structure and quality-trait associations in Blumea balsamifera revealed by EST-SSR markers.

PLoS One. 2025-7-17

[3]
Characteristic of essential oil in DC. leaves and application in flavor oil.

Food Chem X. 2025-5-2

[4]
Development of Roselle ( L.) Transcriptome-Based Simple Sequence Repeat Markers and Their Application in Roselle.

Plants (Basel). 2024-12-16

本文引用的文献

[1]
The complex genome and adaptive evolution of polyploid Chinese pepper (Zanthoxylum armatum and Zanthoxylum bungeanum).

Plant Biotechnol J. 2023-1

[2]
Analysis of the genetic diversity and population structure of Monochasma savatieri Franch. ex Maxim using novel EST-SSR markers.

BMC Genomics. 2022-8-16

[3]
Genomic analysis reveals the genetic diversity, population structure, evolutionary history and relationships of Chinese pepper.

Hortic Res. 2020-10-1

[4]
Comparative assessment of ISSR, RAPD, and SCoT markers for genetic diversity in Clerodendrum species of North East India.

Mol Biol Rep. 2020-10

[5]
Genetic diversity and fingerprinting of 33 standard flue-cured tobacco varieties for use in distinctness, uniformity, and stability testing.

BMC Plant Biol. 2020-8-17

[6]
Genome survey of Zanthoxylum bungeanum and development of genomic-SSR markers in congeneric species.

Biosci Rep. 2020-6-26

[7]
Efficiency of RAPD, ISSR, iPBS, SCoT and phytochemical markers in the genetic relationship study of five native and economical important bamboos of North-East India.

Phytochemistry. 2020-3-5

[8]
Geographical Isolation, Buried Depth, and Physicochemical Traits Drive the Variation of Species Diversity and Prokaryotic Community in Three Typical Hypersaline Environments.

Microorganisms. 2020-1-16

[9]
Mobile genomic element diversity in world collection of safflower (Carthamus tinctorius L.) panel using iPBS-retrotransposon markers.

PLoS One. 2019-2-26

[10]
Genetic analysis of the grapevine genotypes of the Russian Vitis ampelographic collection using iPBS markers.

Genetica. 2019-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索