Suppr超能文献

基于有标签-无标签分布对齐的部分监督多器官医学图像分割。

Labeled-to-unlabeled distribution alignment for partially-supervised multi-organ medical image segmentation.

机构信息

Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.

School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China.

出版信息

Med Image Anal. 2025 Jan;99:103333. doi: 10.1016/j.media.2024.103333. Epub 2024 Sep 5.

Abstract

Partially-supervised multi-organ medical image segmentation aims to develop a unified semantic segmentation model by utilizing multiple partially-labeled datasets, with each dataset providing labels for a single class of organs. However, the limited availability of labeled foreground organs and the absence of supervision to distinguish unlabeled foreground organs from the background pose a significant challenge, which leads to a distribution mismatch between labeled and unlabeled pixels. Although existing pseudo-labeling methods can be employed to learn from both labeled and unlabeled pixels, they are prone to performance degradation in this task, as they rely on the assumption that labeled and unlabeled pixels have the same distribution. In this paper, to address the problem of distribution mismatch, we propose a labeled-to-unlabeled distribution alignment (LTUDA) framework that aligns feature distributions and enhances discriminative capability. Specifically, we introduce a cross-set data augmentation strategy, which performs region-level mixing between labeled and unlabeled organs to reduce distribution discrepancy and enrich the training set. Besides, we propose a prototype-based distribution alignment method that implicitly reduces intra-class variation and increases the separation between the unlabeled foreground and background. This can be achieved by encouraging consistency between the outputs of two prototype classifiers and a linear classifier. Extensive experimental results on the AbdomenCT-1K dataset and a union of four benchmark datasets (including LiTS, MSD-Spleen, KiTS, and NIH82) demonstrate that our method outperforms the state-of-the-art partially-supervised methods by a considerable margin, and even surpasses the fully-supervised methods. The source code is publicly available at LTUDA.

摘要

半监督多器官医学图像分割旨在利用多个部分标注数据集开发统一的语义分割模型,每个数据集都为单个器官类别提供标签。然而,有限的标注前器官的可用性和缺乏区分未标注前器官和背景的监督,这带来了标注和未标注像素之间的分布不匹配的挑战。虽然现有的伪标签方法可以用于学习标注和未标注的像素,但在这项任务中,它们容易出现性能下降的问题,因为它们依赖于标注和未标注的像素具有相同分布的假设。在本文中,为了解决分布不匹配的问题,我们提出了一个标注到未标注分布对齐(LTUDA)框架,该框架对齐特征分布并增强判别能力。具体来说,我们引入了一种跨集数据增强策略,该策略在标注和未标注器官之间执行区域级混合,以减少分布差异并丰富训练集。此外,我们提出了一种基于原型的分布对齐方法,通过鼓励两个原型分类器和一个线性分类器的输出之间的一致性,来减少类内变异并增加未标注前器官和背景之间的分离。在 AbdomenCT-1K 数据集和四个基准数据集(包括 LiTS、MSD-Spleen、KiTS 和 NIH82)的联合上进行的广泛实验结果表明,我们的方法明显优于最先进的半监督方法,甚至超过了完全监督方法。该方法的源代码在 LTUDA 上公开可用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验