Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan.
National Institute of Advanced Industrial Science and Technology (AIST), 205 Sakurazaka 4-chome, Moriyama-ku, Nagoya, Aichi, 463-8560, Japan.
Nanoscale. 2024 Oct 3;16(38):17877-17885. doi: 10.1039/d4nr02583k.
The escalating threat of antibiotic-resistant bacterial biofilms necessitates innovative antimicrobial strategies. This study introduces silver-decorated azithromycin-infused Soluplus® nanoparticles (Ag-AZI-Sol NPs) synthesized a controlled emulsion diffusion method to ensure sustained release of antimicrobial silver ions for over six hours-a critical factor for continuous antibacterial efficacy. The efficacy of these nanoparticles was evaluated against biofilms formed by () and (), pathogens that cause hospital-acquired infections. Concentrations of 5 and 10 μg mL of Ag-AZI-Sol NPs induced significant morphological changes within the biofilms, disrupting the bacterial extracellular matrix as observed using scanning electron microscopy (SEM). This disruption peaked between two and six hours, coinciding with damage to bacterial cells by the silver ions. Antibacterial assay measurements confirmed a significant reduction in the growth rate among the Ag-AZI-Sol NP-treated bacteria compared with controls. Electrochemical analysis using laser-induced graphene (LIG) and chronoamperometry revealed a decline in current, indicating an effective antibacterial effect. This innovative biosensing technique makes use of the high conductivity and surface area of LIG to detect changes in bacterial activity quickly and sensitively. Our findings highlight the potent microbicidal properties of Ag-AZI-Sol NPs and suggest diverse applications from food processing to medical device coatings.
不断升级的抗生素耐药菌生物膜威胁需要创新的抗菌策略。本研究介绍了银修饰的阿奇霉素注入 Soluplus®纳米粒子(Ag-AZI-Sol NPs),通过控制乳液扩散法确保抗菌银离子持续释放超过六小时,这是持续抗菌效果的关键因素。这些纳米粒子的功效针对 ()和 ()形成的生物膜进行了评估,这两种病原体可导致医院获得性感染。浓度为 5 和 10 μg mL 的 Ag-AZI-Sol NPs 可引起生物膜内的明显形态变化,使用扫描电子显微镜(SEM)观察到破坏了细菌细胞外基质。这种破坏在两到六小时之间达到峰值,与银离子对细菌细胞的损伤一致。抗菌测定测量结果证实,与对照组相比,Ag-AZI-Sol NP 处理的细菌生长速度显著降低。使用激光诱导石墨烯(LIG)和计时安培法进行的电化学分析显示电流下降,表明具有有效的抗菌作用。这种创新的生物传感技术利用 LIG 的高导电性和表面积快速而敏感地检测细菌活性的变化。我们的研究结果强调了 Ag-AZI-Sol NPs 的强大杀菌性能,并暗示了从食品加工到医疗器械涂层的多种应用。