Suppr超能文献

用双四元数构建运动学置信区域

Constructing Kinematic Confidence Regions With Double Quaternions.

作者信息

Ge Q Jeffrey, Yu Zihan, Purwar Anurag, Langer Mark P

机构信息

Department of Mechanical Engineering, Stony Brook University, Stony Brook, New York, USA.

Department of Radiation Oncology, Indiana University, Indianapolis, Indiana.

出版信息

Proc MSR RomanSy 2024 (2024). 2024;159:215-230. doi: 10.1007/978-3-031-60618-2_18. Epub 2024 May 29.

Abstract

A spatial displacement as an element of can be approximated by a 4D rotation, which is an element of . In this way, the problem of constructing confidence regions of uncertain spatial displacements may be studied as that of constructing confidence ellipsoids in . In this light, a double-quaternion formulation of kinematic confidence regions is presented that approximately preserve the geometry of . Examples are provided to demonstrate the efficacy of this approach in comparison with the dual-quaternion formulation.

摘要

作为 的一个元素的空间位移可以由作为 的一个元素的四维旋转来近似。通过这种方式,构建不确定空间位移的置信区域的问题可以作为在 中构建置信椭球体的问题来研究。鉴于此,提出了运动学置信区域的双四元数公式,该公式近似地保留了 的几何形状。提供了示例以证明该方法与对偶四元数公式相比的有效性。

相似文献

1
Constructing Kinematic Confidence Regions With Double Quaternions.用双四元数构建运动学置信区域
Proc MSR RomanSy 2024 (2024). 2024;159:215-230. doi: 10.1007/978-3-031-60618-2_18. Epub 2024 May 29.
2
4
ON THE COMPUTATION OF THE AVERAGE OF SPATIAL DISPLACEMENTS.论空间位移平均值的计算
Proc ASME Des Eng Tech Conf. 2022 Aug;7(46). doi: 10.1115/detc2022-90156. Epub 2022 Nov 11.
6
On the mean and variance of planar displacements.关于平面位移的均值和方差。
Int J Mech Robot Syst. 2023;5(4):308-325. doi: 10.1504/ijmrs.2023.137478. Epub 2024 Mar 19.
7
The quaternion-based spatial-coordinate and orientation-frame alignment problems.基于四元数的空间坐标和方向框架对齐问题。
Acta Crystallogr A Found Adv. 2020 Jul 1;76(Pt 4):432-457. doi: 10.1107/S2053273320002648. Epub 2020 Jun 18.
9
Molecular symmetry with quaternions.四元数的分子对称性。
Spectrochim Acta A Mol Biomol Spectrosc. 2001 Sep 1;57(10):1919-30. doi: 10.1016/s1386-1425(01)00477-2.
10
Interpolation of three dimensional kinematics with dual-quaternions.使用对偶四元数对三维运动学进行插值
J Biomech. 2017 Jan 25;51:105-110. doi: 10.1016/j.jbiomech.2016.10.028. Epub 2016 Oct 27.

本文引用的文献

1
3
The Distribution of Chi-Square.卡方分布
Proc Natl Acad Sci U S A. 1931 Dec;17(12):684-8. doi: 10.1073/pnas.17.12.684.
4
Margins for translational and rotational uncertainties: a probability-based approach.
Int J Radiat Oncol Biol Phys. 2002 Jun 1;53(2):464-74. doi: 10.1016/s0360-3016(02)02749-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验