Yadalam Pradeep Kumar, Anegundi Raghavendra Vamsi, Thilagar Sivasankari, Arumuganainar Deepavalli, Shrivastava Deepti, Heboyan Artak
Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technology Sciences, SIMATS, Saveetha. University, Chennai, Tamil Nadu, India.
Department of Periodontics, Ragas Dental College and Hospital, Uthandi, Chennai, India.
Biomed Eng Comput Biol. 2024 Sep 6;15:11795972241277639. doi: 10.1177/11795972241277639. eCollection 2024.
The production of inflammatory factors in periodontium is increased by LPS, particularly from P. gingivalis, and the damage to periodontal tissues is exacerbated. Exosomes from periodontal ligament stem cells change regeneration and repair brought on by bacterial LPS. MiRNAs are carried by exosomes to recipient cells to affect epigenetic functions. Thus, this study aims to utilize deep learning algorithms to uncover novel micro-RNA biomarkers in bacterial LPS-exposed PDLSC stem cells to understand the activation pathway.
Using NCBI GEO DATA SET GSE163489, the most differentially expressed micro RNAs were found to differ between healthy and LPS-induced PDLSC cells. Deep learning analysis, employing a Random Forest, Artificial Neural Network c, a Support Vector Machine (SVM), and a Linear Regression model implemented within the orange data mining toolkit, identified novel microRNA biomarkers. The orange data mining toolkit was utilized for deep learning analysis of microRNA expression data, providing a user-friendly environment for machine learning tasks like classification, regression, and clustering.
Random Forest emerged as the superior model, achieving the highest score (.985) and the lowest RMSE (0.189) compared to Neural Networks ( = .952, RMSE = 0.332), Linear Regression ( = .949, RMSE = 0.343), and SVM ( = .931, RMSE = 0.398). This suggests its superior ability to capture the underlying patterns in the microRNA expression data. Given its robust performance, Random Forest holds promise for identifying novel biomarkers, developing more accurate diagnostic tools, and potentially guiding the stratification of patients for targeted therapeutic interventions in periodontal disease.
The current study utilizes deep learning analysis of microRNA expression data to identify novel biomarkers associated with inflammasome activation and anti-apoptotic pathways. These findings hold promise for guiding the development of novel therapeutic strategies for periodontal disease. However, future studies are warranted to validate these biomarkers using independent datasets and experimental methods.
脂多糖(LPS),尤其是牙龈卟啉单胞菌产生的脂多糖,会增加牙周组织中炎症因子的产生,并加剧对牙周组织的损伤。牙周膜干细胞分泌的外泌体可改变细菌脂多糖引起的再生和修复过程。微小RNA(miRNA)通过外泌体携带至受体细胞,影响表观遗传功能。因此,本研究旨在利用深度学习算法,在暴露于细菌脂多糖的牙周膜干细胞(PDLSC)中发现新的微小RNA生物标志物,以了解其激活途径。
利用NCBI基因表达综合数据库(GEO DATA SET)GSE163489,发现健康与脂多糖诱导的牙周膜干细胞中差异表达最显著的微小RNA。采用随机森林、人工神经网络c、支持向量机(SVM)和线性回归模型,在橙色数据挖掘工具包中进行深度学习分析,以识别新的微小RNA生物标志物。橙色数据挖掘工具包用于对微小RNA表达数据进行深度学习分析,为分类、回归和聚类等机器学习任务提供了用户友好的环境。
随机森林成为最优模型,与神经网络(准确率=0.952,均方根误差=0.332)、线性回归(准确率=0.949,均方根误差=0.343)和支持向量机(准确率=0.931,均方根误差=0.398)相比,其准确率最高(0.985),均方根误差最低(0.189)。这表明其在捕捉微小RNA表达数据潜在模式方面具有卓越能力。鉴于其稳健的性能,随机森林有望识别新的生物标志物,开发更准确的诊断工具,并可能指导牙周病患者的分层以进行靶向治疗干预。
本研究利用对微小RNA表达数据的深度学习分析,识别出与炎性小体激活和抗凋亡途径相关的新生物标志物。这些发现有望指导牙周病新治疗策略的开发。然而,未来有必要使用独立数据集和实验方法对这些生物标志物进行验证。