Suppr超能文献

基于动态鹈鹕优化器优化MobileNetV2以提高早期胃癌检测的准确性。

Optimizing MobileNetV2 for improved accuracy in early gastric cancer detection based on dynamic pelican optimizer.

作者信息

Zhou Guoping, He Qiyu, Liu Xiaoli, Kai Xinghua, Cao Weikang, Ding Junning, Zhuang Bufeng, Xu Shuhua, Thwin Myo

机构信息

Department of General Surgery, Dongtai Hospital of Traditional Chinese Medicine, Dongtai, 224221, Jiangsu, China.

Department of Thoracic Surgery, Dongtai Hospital of Traditional Chinese Medicine, Dongtai, 224221, Jiangsu, China.

出版信息

Heliyon. 2024 Aug 6;10(16):e35854. doi: 10.1016/j.heliyon.2024.e35854. eCollection 2024 Aug 30.

Abstract

This paper presents an innovative framework for the automated diagnosis of gastric cancer using artificial intelligence. The proposed approach utilizes a customized deep learning model called MobileNetV2, which is optimized using a Dynamic variant of the Pelican Optimization Algorithm (DPOA). By combining these advanced techniques, it is feasible to achieve highly accurate results when applied to a dataset of endoscopic gastric images. To evaluate the performance of the model based on the benchmark, its data is divided into training (80 %) and testing (20 %) sets. The MobileNetV2/DPOA model demonstrated an impressive accuracy of 97.73 %, precision of 97.88 %, specificity of 97.72 %, sensitivity of 96.35 %, Matthews Correlation Coefficient (MCC) of 96.58 %, and F1-score of 98.41 %. These results surpassed those obtained by other well-known models, such as Convolutional Neural Networks (CNN), Mask Region-Based Convolutional Neural Networks (Mask R-CNN), U-Net, Deep Stacked Sparse Autoencoder Neural Networks (SANNs), and DeepLab v3+, in terms of most quantitative metrics. Despite the promising outcomes, it is important to note that further research is needed. Specifically, larger and more diverse datasets as well as exhaustive clinical validation are necessary to validate the effectiveness of the proposed method. By implementing this innovative approach in the detection of gastric cancer, it is possible to enhance the speed and accuracy of diagnosis, leading to improved patient care and better allocation of healthcare resources.

摘要

本文提出了一种利用人工智能进行胃癌自动诊断的创新框架。所提出的方法利用了一种名为MobileNetV2的定制深度学习模型,该模型使用鹈鹕优化算法的动态变体(DPOA)进行了优化。通过结合这些先进技术,当应用于内镜胃图像数据集时,获得高度准确的结果是可行的。为了基于基准评估模型的性能,其数据被分为训练集(80%)和测试集(20%)。MobileNetV2/DPOA模型表现出令人印象深刻的准确率97.73%、精确率97.88%、特异性97.72%、灵敏度96.35%、马修斯相关系数(MCC)96.58%和F1分数98.41%。在大多数定量指标方面,这些结果超过了其他知名模型,如卷积神经网络(CNN)、基于掩膜区域的卷积神经网络(Mask R-CNN)、U-Net、深度堆叠稀疏自动编码器神经网络(SANNs)和DeepLab v3+所获得的结果。尽管取得了令人鼓舞的成果,但需要注意的是,还需要进一步的研究。具体而言,需要更大、更多样化的数据集以及详尽的临床验证来验证所提出方法的有效性。通过在胃癌检测中实施这种创新方法,可以提高诊断的速度和准确性,从而改善患者护理并更好地分配医疗资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2e2/11380007/f17f3365a05e/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验