Suppr超能文献

区域特异性微分同胚度量映射

Region-specific Diffeomorphic Metric Mapping.

作者信息

Shen Zhengyang, Vialard François-Xavier, Niethammer Marc

机构信息

UNC Chapel Hill.

LIGM, UPEM.

出版信息

Adv Neural Inf Process Syst. 2019 Dec;32:1098-1108.

Abstract

We introduce a region-specific diffeomorphic metric mapping (RDMM) registration approach. RDMM is non-parametric, estimating spatio-temporal velocity fields which parameterize the sought-for spatial transformation. Regularization of these velocity fields is necessary. In contrast to existing non-parametric registration approaches using a fixed spatially-invariant regularization, for example, the large displacement diffeomorphic metric mapping (LDDMM) model, our approach allows for spatially-varying regularization which is advected via the estimated spatio-temporal velocity field. Hence, not only can our model capture large displacements, it does so with a spatio-temporal regularizer that keeps track of how regions deform, which is a more natural mathematical formulation. We explore a family of RDMM registration approaches: 1) a registration model where regions with separate regularizations are pre-defined (e.g., in an atlas space or for distinct foreground and background regions), 2) a registration model where a general spatially-varying regularizer is estimated, and 3) a registration model where the spatially-varying regularizer is obtained via an end-to-end trained deep learning (DL) model. We provide a variational derivation of RDMM, showing that the model can assure diffeomorphic transformations in the continuum, and that LDDMM is a particular instance of RDMM. To evaluate RDMM performance we experiment 1) on synthetic 2D data and 2) on two 3D datasets: knee magnetic resonance images (MRIs) of the Osteoarthritis Initiative (OAI) and computed tomography images (CT) of the lung. Results show that our framework achieves comparable performance to state-of-the-art image registration approaches, while providing additional information via a learned spatio-temporal regularizer. Further, our deep learning approach allows for very fast RDMM and LDDMM estimations. Code is available at https://github.com/uncbiag/registration.

摘要

我们介绍了一种区域特定的微分同胚度量映射(RDMM)配准方法。RDMM是非参数的,它估计时空速度场,这些速度场对所需的空间变换进行参数化。对这些速度场进行正则化是必要的。与现有的使用固定空间不变正则化的非参数配准方法(例如,大位移微分同胚度量映射(LDDMM)模型)不同,我们的方法允许通过估计的时空速度场进行空间变化的正则化。因此,我们的模型不仅可以捕获大位移,而且通过一个时空正则化器来实现,该正则化器可以跟踪区域如何变形,这是一种更自然的数学表述。我们探索了一系列RDMM配准方法:1)一种配准模型,其中具有单独正则化的区域是预先定义的(例如,在图谱空间中或针对不同的前景和背景区域);2)一种配准模型,其中估计一个通用的空间变化正则化器;3)一种配准模型,其中通过端到端训练的深度学习(DL)模型获得空间变化正则化器。我们给出了RDMM的变分推导,表明该模型可以确保在连续统中的微分同胚变换,并且LDDMM是RDMM的一个特殊实例。为了评估RDMM的性能,我们进行了两项实验:1)在合成二维数据上;2)在两个三维数据集上:骨关节炎倡议(OAI)的膝关节磁共振图像(MRI)和肺部计算机断层扫描图像(CT)。结果表明,我们的框架实现了与当前最先进的图像配准方法相当的性能,同时通过学习到的时空正则化器提供了额外的信息。此外,我们的深度学习方法允许非常快速地估计RDMM和LDDMM。代码可在https://github.com/uncbiag/registration获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5eb/9450565/378dfab74b03/nihms-1602590-f0001.jpg

相似文献

2
Metric Learning for Image Registration.用于图像配准的度量学习
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2019 Jun;2019:8455-8464. doi: 10.1109/cvpr.2019.00866. Epub 2020 Jan 9.
3
Anatomical Data Augmentation via Fluid-based Image Registration.通过基于流体的图像配准进行解剖数据增强
Med Image Comput Comput Assist Interv. 2020 Oct;12263:318-328. doi: 10.1007/978-3-030-59716-0_31. Epub 2020 Sep 29.
7
Band-Limited Stokes Large Deformation Diffeomorphic Metric Mapping.带限 Stokes 大变形仿射度量映射。
IEEE J Biomed Health Inform. 2019 Jan;23(1):362-373. doi: 10.1109/JBHI.2018.2815346. Epub 2018 Mar 12.
9
Networks for Joint Affine and Non-parametric Image Registration.联合仿射和非参数图像配准网络
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2019 Jun;2019:4219-4228. doi: 10.1109/cvpr.2019.00435. Epub 2020 Jan 9.

引用本文的文献

1
Diffeomorphic image registration with bijective consistency.具有双射一致性的微分同胚图像配准
Proc SPIE Int Soc Opt Eng. 2024 Feb;12926. doi: 10.1117/12.3006871. Epub 2024 Apr 2.
3
Anatomical Data Augmentation via Fluid-based Image Registration.通过基于流体的图像配准进行解剖数据增强
Med Image Comput Comput Assist Interv. 2020 Oct;12263:318-328. doi: 10.1007/978-3-030-59716-0_31. Epub 2020 Sep 29.
6
ICON: Learning Regular Maps Through Inverse Consistency.ICON:通过反向一致性学习正则映射。
Proc IEEE Int Conf Comput Vis. 2021 Oct;2021:3376-3385. doi: 10.1109/iccv48922.2021.00338.
7
A Deep Network for Joint Registration and Reconstruction of Images with Pathologies.一种用于联合配准和重建病变图像的深度网络。
Mach Learn Med Imaging. 2020 Oct;12436:342-352. doi: 10.1007/978-3-030-59861-7_35. Epub 2020 Sep 29.

本文引用的文献

2
Metric Learning for Image Registration.用于图像配准的度量学习
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2019 Jun;2019:8455-8464. doi: 10.1109/cvpr.2019.00866. Epub 2020 Jan 9.
3
Networks for Joint Affine and Non-parametric Image Registration.联合仿射和非参数图像配准网络
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2019 Jun;2019:4219-4228. doi: 10.1109/cvpr.2019.00435. Epub 2020 Jan 9.
5
Deformable Image Registration Using a Cue-Aware Deep Regression Network.基于线索感知深度回归网络的可变形图像配准
IEEE Trans Biomed Eng. 2018 Sep;65(9):1900-1911. doi: 10.1109/TBME.2018.2822826. Epub 2018 Apr 4.
6
Quicksilver: Fast predictive image registration - A deep learning approach.快银:快速预测图像配准 - 深度学习方法。
Neuroimage. 2017 Sep;158:378-396. doi: 10.1016/j.neuroimage.2017.07.008. Epub 2017 Jul 11.
7
Probabilistic non-linear registration with spatially adaptive regularisation.基于空间自适应正则化的概率非线性配准。
Med Image Anal. 2015 Dec;26(1):203-16. doi: 10.1016/j.media.2015.08.006. Epub 2015 Sep 28.
8
Global image registration using a symmetric block-matching approach.使用对称块匹配方法的全局图像配准
J Med Imaging (Bellingham). 2014 Jul;1(2):024003. doi: 10.1117/1.JMI.1.2.024003. Epub 2014 Sep 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验