Suppr超能文献

人工智能对理解摩洛哥动物狂犬病流行病学的贡献:创新和预测方法的前景如何?

Contribution of artificial intelligence for understanding animal rabies epidemiology in Morocco: What are the perspectives of an innovative and predictive approaches?

作者信息

Ahamjik Ilham, Agbani Ayman, Abik Mounia, Khayli Mounir, Galzim Naima, Berrada Jaouad, Bouslikhane Mohammed

机构信息

Office National de Sécurité Sanitaire des Produits Alimentaires (ONSSA), Rabat-Instituts P. O. Box 6472, Rabat, Morocco.

Institut Agronomique et Vétérinaire Hassan II, Department of Pathology and Veterinary Public Health P. O. Box 6202, Madinat Al Irfane, Rabat, Morocco.

出版信息

One Health. 2024 Aug 13;19:100874. doi: 10.1016/j.onehlt.2024.100874. eCollection 2024 Dec.

Abstract

Rabies is a major zoonotic disease legally notifiable in Morocco and elsewhere. Given the burden of rabies and its impact on public health, several national control programs have been implemented since 1986, without achieving their expected objectives. The aim of this study was to design a predictive analysis of rabies in Morocco. The expected outcome was the construction of probabilistic diagrams that can guide actions for the integrated control of this disease, involving all stakeholders, in the country. Such modeling is an essential step in operational epidemiology to optimize expenditure of public funds allocated to the integrated strategy for fighting this disease. The methodology employed combined the use of geospatial analysis tools (kriging) and artificial intelligence models (Machine Learning). In order to investigate the link between the risk of rabies within a territorial municipality (commune) and its socio-economic situation, the following data were analyzed: (1) health data: reported animal cases of rabies between 2004 and 2021 and data obtained through the ArcGIS kriging tool (Geospatial data); (2) demographic and socio-economic data. We compared several Machine Learning models. Of these, the "Imbalanced-Xgboost" model associated with kriging yielded the best results. After optimizing this model, we mapped our results for better visualization. The obtained results complement and consolidate previous study in this field with greater accuracy, showing a strong correlation between a commune's socio-economic status, its geographical location and its risk level of rabies. From this, 399 out of the 1546 communes have been identified as high-risk areas, accounting for 25.8% of the total number of communes. Under this risk-based approach, the results of these analyses make it practical to take targeted decisions for rabies prevention and control, as well as canine population control, in a territorial commune according to its risk level. Such an approach allows obvious optimized distribution of financial resources and adaptation of the control actions to be taken. The study highlights also the importance of using innovative technologies to refine epidemiological approaches and fill gaps in field data. Through this study, we hope to contribute to eradication of rabies in Morocco by providing reliable data and practical recommendations for control actions against rabies.

摘要

狂犬病是一种主要的人畜共患病,在摩洛哥及其他地区都属于法定报告疾病。鉴于狂犬病的负担及其对公共卫生的影响,自1986年以来已实施了多项国家防控计划,但均未实现预期目标。本研究的目的是对摩洛哥的狂犬病进行预测分析。预期成果是构建概率图,以指导该国所有利益相关者参与的针对这种疾病的综合防控行动。这种建模是操作流行病学中的关键一步,有助于优化分配给该疾病综合防控策略的公共资金支出。所采用的方法结合了地理空间分析工具(克里金法)和人工智能模型(机器学习)。为了调查市镇辖区内狂犬病风险与其社会经济状况之间的联系,分析了以下数据:(1)健康数据:2004年至2021年报告的动物狂犬病病例以及通过ArcGIS克里金工具获得的数据(地理空间数据);(2)人口和社会经济数据。我们比较了几种机器学习模型。其中,与克里金法相关的“不平衡XGBoost”模型取得了最佳结果。对该模型进行优化后,我们绘制了结果以便更好地可视化。所得结果以更高的准确性补充和巩固了该领域以前的研究,表明市镇的社会经济地位、地理位置与其狂犬病风险水平之间存在很强的相关性。据此,1546个市镇中有399个被确定为高风险地区,占市镇总数的25.8%。在这种基于风险的方法下,这些分析结果使得根据市镇的风险水平在辖区内针对狂犬病预防和控制以及犬类种群控制做出有针对性的决策成为可能。这种方法能够实现财政资源的明显优化分配,并使所采取的控制行动更加合理。该研究还强调了使用创新技术来完善流行病学方法和填补实地数据空白的重要性。通过这项研究,我们希望通过提供可靠的数据和针对狂犬病控制行动的实用建议,为摩洛哥消除狂犬病做出贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cda8/11378930/2cd914da60ac/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验