Gebeyehu Zewdu M, Mišeikis Vaidotas, Forti Stiven, Rossi Antonio, Mishra Neeraj, Boschi Alex, Ivanov Yurii P, Martini Leonardo, Ochapski Michal W, Piccinini Giulia, Watanabe Kenji, Taniguchi Takashi, Divitini Giorgio, Beltram Fabio, Pezzini Sergio, Coletti Camilla
Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy.
Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.
Adv Mater. 2024 Nov;36(44):e2404590. doi: 10.1002/adma.202404590. Epub 2024 Sep 9.
The growth of high-quality graphene on flat and rigid templates, such as metal thin films on insulating wafers, is regarded as a key enabler for technologies based on 2D materials. In this work, the growth of decoupled graphene is introduced via non-reducing low-pressure chemical vapor deposition (LPCVD) on crystalline Cu(111) films deposited on sapphire. The resulting film is atomically flat, with no detectable cracks or ripples, and lies atop of a thin CuO layer, as confirmed by microscopy, diffraction, and spectroscopy analyses. Post-growth treatment of the partially decoupled graphene enables full and uniform oxidation of the interface, greatly simplifying subsequent transfer processes, particularly dry-pick up - a task that proves challenging when dealing with graphene directly synthesized on metallic Cu(111). Electrical transport measurements reveal high carrier mobility at room temperature, exceeding 10 cm V s on SiO/Si and 10 cm V s upon encapsulation in hexagonal boron nitride (hBN). The demonstrated growth approach yields exceptional material quality, in line with micro-mechanically exfoliated graphene flakes, and thus paves the way toward large-scale production of pristine graphene suitable for high-performance next-generation applications.
在平坦且刚性的模板(如绝缘晶圆上的金属薄膜)上生长高质量石墨烯,被视为基于二维材料的技术的关键推动因素。在这项工作中,通过在沉积于蓝宝石上的晶体Cu(111)薄膜上进行非还原低压化学气相沉积(LPCVD)来实现解耦石墨烯的生长。通过显微镜、衍射和光谱分析证实,所得薄膜原子级平整,没有可检测到的裂纹或波纹,且位于一层薄的CuO层之上。对部分解耦的石墨烯进行生长后处理,可使界面完全且均匀地氧化,极大地简化了后续的转移过程,尤其是干拾取——这一任务在处理直接在金属Cu(111)上合成的石墨烯时被证明具有挑战性。电输运测量表明,在室温下具有高载流子迁移率,在SiO/Si上超过10 cm² V⁻¹ s⁻¹,封装在六方氮化硼(hBN)中时为10 cm² V⁻¹ s⁻¹。所展示的生长方法产生了与微机械剥离的石墨烯薄片相当的优异材料质量,从而为大规模生产适用于高性能下一代应用的原始石墨烯铺平了道路。