Suppr超能文献

功能主成分分析作为一种替代混合效应模型的方法,用于描述存在缺失数据时稀疏重复测量的情况。

Functional Principal Component Analysis as an Alternative to Mixed-Effect Models for Describing Sparse Repeated Measures in Presence of Missing Data.

机构信息

Univ. Bordeaux, INSERM, INRIA, BPH, U1219, Bordeaux, France.

Univ. Bordeaux, INSERM, BPH, U1219, Bordeaux, France.

出版信息

Stat Med. 2024 Nov 20;43(26):4899-4912. doi: 10.1002/sim.10214. Epub 2024 Sep 9.

Abstract

Analyzing longitudinal data in health studies is challenging due to sparse and error-prone measurements, strong within-individual correlation, missing data and various trajectory shapes. While mixed-effect models (MM) effectively address these challenges, they remain parametric models and may incur computational costs. In contrast, functional principal component analysis (FPCA) is a non-parametric approach developed for regular and dense functional data that flexibly describes temporal trajectories at a potentially lower computational cost. This article presents an empirical simulation study evaluating the behavior of FPCA with sparse and error-prone repeated measures and its robustness under different missing data schemes in comparison with MM. The results show that FPCA is well-suited in the presence of missing at random data caused by dropout, except in scenarios involving most frequent and systematic dropout. Like MM, FPCA fails under missing not at random mechanism. The FPCA was applied to describe the trajectories of four cognitive functions before clinical dementia and contrast them with those of matched controls in a case-control study nested in a population-based aging cohort. The average cognitive declines of future dementia cases showed a sudden divergence from those of their matched controls with a sharp acceleration 5 to 2.5 years prior to diagnosis.

摘要

分析健康研究中的纵向数据具有挑战性,因为存在稀疏且易出错的测量值、个体内强相关性、缺失数据和各种轨迹形状。尽管混合效应模型(MM)有效地解决了这些挑战,但它们仍然是参数模型,并且可能会产生计算成本。相比之下,功能主成分分析(FPCA)是一种针对规则且密集的功能数据开发的非参数方法,它可以灵活地描述潜在更低计算成本的时间轨迹。本文通过实证模拟研究,评估了 FPCA 在稀疏且易出错的重复测量中的行为及其在不同缺失数据方案下与 MM 相比的稳健性。结果表明,FPCA 适用于由辍学引起的随机缺失数据,除了涉及最频繁和系统辍学的情况。与 MM 一样,FPCA 在非随机缺失机制下失效。该 FPCA 被应用于描述在临床痴呆前的四个认知功能的轨迹,并将其与嵌套在基于人群的老龄化队列中的病例对照研究中的匹配对照组进行比较。未来痴呆病例的平均认知下降显示出与他们的匹配对照组突然分离,在诊断前 5 至 2.5 年内出现急剧加速。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验