Department of Ultrasound, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China.
Department of Gastroenterology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China.
Adv Sci (Weinh). 2024 Nov;11(42):e2405741. doi: 10.1002/advs.202405741. Epub 2024 Sep 9.
Sonopiezocatalytic therapy is an emerging therapeutic strategy that utilizes ultrasound irradiation to activate piezoelectric materials, inducing polarization and energy band bending to facilitate the generation of reactive oxygen species (ROS). However, the efficient generation of ROS is hindered by the long distance of charge migration from the bulk to the material surface. Herein, atomically thin BiO(OH)(NO) (AT-BON) nanosheets are rationally engineered through disrupting the weaker hydrogen bonds within the [OH] and [NO] layer in the bulk material. The ultrathin structure of AT-BON piezocatalytic nanosheets shortens the migration distance of carriers, expands the specific surface area, and accelerates the charge transfer efficiency, showcasing a natural advantage in ROS generation. Importantly, the non-centrosymmetric polar crystal structure grants the nanosheets the ability to separate electron-hole pairs. Under ultrasonic mechanical stress, BiO(OH)(NO) nanosheets with the remarkable piezoelectric feature exhibit the desirable in vivo antineoplastic outcomes in both breast cancer model and liver cancer model. Especially, the AT-BON-induced ROS bursts lead to the activation of the Caspase-1-driven pyroptosis pathway. This study highlights the beneficial impact of bulk material thinning on enhancing ROS generation efficiency and anti-cancer effects.
声压电催化疗法是一种新兴的治疗策略,利用超声辐射来激活压电材料,诱导极化和能带弯曲,以促进活性氧物种(ROS)的产生。然而,ROS 的高效产生受到电荷从体相迁移到材料表面的长距离的阻碍。在此,通过破坏体相中[OH]和[NO]层内较弱的氢键,合理设计了原子层厚的 BiO(OH)(NO)(AT-BON)纳米片。AT-BON 压电机纳米片的超薄结构缩短了载流子的迁移距离,扩大了比表面积,并加速了电荷转移效率,在 ROS 产生方面表现出了天然优势。重要的是,非中心对称的极性晶体结构赋予了纳米片分离电子-空穴对的能力。在超声机械应力下,具有显著压电特性的 BiO(OH)(NO)纳米片在乳腺癌模型和肝癌模型中均表现出理想的体内抗肿瘤效果。特别是,AT-BON 诱导的 ROS 爆发导致 Caspase-1 驱动的细胞焦亡途径的激活。本研究强调了体相减薄对提高 ROS 产生效率和抗癌效果的有益影响。