Suppr超能文献

从推文到街头:2019 年至 2022 年纽约市推特情绪与反亚裔仇恨犯罪的观察性研究。

From Tweets to Streets: Observational Study on the Association Between Twitter Sentiment and Anti-Asian Hate Crimes in New York City from 2019 to 2022.

机构信息

Department of City and Regional Planning, Cornell University, Ithaca, NY, United States.

Department of Epidemiology and Biostatistics, Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, United States.

出版信息

J Med Internet Res. 2024 Sep 9;26:e53050. doi: 10.2196/53050.

Abstract

BACKGROUND

Anti-Asian hate crimes escalated during the COVID-19 pandemic; however, limited research has explored the association between social media sentiment and hate crimes toward Asian communities.

OBJECTIVE

This study aims to investigate the relationship between Twitter (rebranded as X) sentiment data and the occurrence of anti-Asian hate crimes in New York City from 2019 to 2022, a period encompassing both before and during COVID-19 pandemic conditions.

METHODS

We used a hate crime dataset from the New York City Police Department. This dataset included detailed information on the occurrence of anti-Asian hate crimes at the police precinct level from 2019 to 2022. We used Twitter's application programming interface for Academic Research to collect a random 1% sample of publicly available Twitter data in New York State, including New York City, that included 1 or more of the selected Asian-related keywords and applied support vector machine to classify sentiment. We measured sentiment toward the Asian community using the rates of negative and positive sentiment expressed in tweets at the monthly level (N=48). We used negative binomial models to explore the associations between sentiment levels and the number of anti-Asian hate crimes in the same month. We further adjusted our models for confounders such as the unemployment rate and the emergence of the COVID-19 pandemic. As sensitivity analyses, we used distributed lag models to capture 1- to 2-month lag times.

RESULTS

A point increase of 1% in negative sentiment rate toward the Asian community in the same month was associated with a 24% increase (incidence rate ratio [IRR] 1.24; 95% CI 1.07-1.44; P=.005) in the number of anti-Asian hate crimes. The association was slightly attenuated after adjusting for unemployment and COVID-19 emergence (ie, after March 2020; P=.008). The positive sentiment toward Asian tweets with a 0-month lag was associated with a 12% decrease (IRR 0.88; 95% CI 0.79-0.97; P=.002) in expected anti-Asian hate crimes in the same month, but the relationship was no longer significant after adjusting for the unemployment rate and the emergence of COVID-19 pandemic (P=.11).

CONCLUSIONS

A higher negative sentiment level was associated with more hate crimes specifically targeting the Asian community in the same month. The findings highlight the importance of monitoring public sentiment to predict and potentially mitigate hate crimes against Asian individuals.

摘要

背景

在 COVID-19 大流行期间,针对亚裔的仇恨犯罪事件有所升级;然而,针对社交媒体情绪与针对亚裔社区的仇恨犯罪之间的关联,相关研究仍然有限。

目的

本研究旨在探究 2019 年至 2022 年间,纽约市的推特(现已更名为 X)情绪数据与反亚裔仇恨犯罪事件之间的关系,研究时间段涵盖 COVID-19 大流行前后。

方法

我们使用了纽约市警察局的仇恨犯罪数据集。该数据集包含了 2019 年至 2022 年间,按警区划分的反亚裔仇恨犯罪事件的详细信息。我们使用了推特的学术研究应用程序接口,收集了纽约州(包括纽约市)内 1%的公开可用推特数据作为随机样本,这些数据包含 1 个或多个选定的与亚洲相关的关键词,并应用支持向量机对情绪进行分类。我们使用每月的负面和正面情绪表达率来衡量针对亚裔群体的情绪(N=48)。我们使用负二项式模型来探索同一月份的情绪水平与反亚裔仇恨犯罪数量之间的关联。我们进一步针对失业率和 COVID-19 大流行的出现等混杂因素进行了模型调整。作为敏感性分析,我们使用分布式滞后模型来捕捉 1 至 2 个月的滞后时间。

结果

同一月份针对亚裔群体的负面情绪率增加 1%,与反亚裔仇恨犯罪数量增加 24%(发病率比 [IRR] 1.24;95%置信区间 [CI] 1.07-1.44;P=.005)相关。在调整失业率和 COVID-19 出现(即 2020 年 3 月后)后,这种关联略有减弱(P=.008)。具有 0 个月滞后的针对亚裔的积极情绪推文与同一月份预期反亚裔仇恨犯罪减少 12%(IRR 0.88;95% CI 0.79-0.97;P=.002)相关,但在调整失业率和 COVID-19 大流行出现后,这种关系不再显著(P=.11)。

结论

更高的负面情绪水平与同一月份针对亚裔社区的仇恨犯罪事件增加有关。研究结果强调了监测公众情绪以预测和潜在缓解针对亚裔个人的仇恨犯罪的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7578/11420573/394502289766/jmir_v26i1e53050_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验