Suppr超能文献

2020 年 3 月 9 日至 23 日,推特上的“#covid19”与“#chinesevirus”与反亚裔情绪的关联。

Association of "#covid19" Versus "#chinesevirus" With Anti-Asian Sentiments on Twitter: March 9-23, 2020.

机构信息

Yulin Hswen is with the Department of Epidemiology and Biostatistics, Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco; and Computational Epidemiology Lab, Harvard Medical School, Boston, MA. Xiang Xu is with the Department of Statistics, Boston University, Boston. Anna Hing and Gilbert C. Gee are with the Department of Community Health Sciences, University of California Los Angeles. Jared B. Hawkins and John S. Brownstein are with the Innovation Program, Boston Children's Hospital, Boston.

出版信息

Am J Public Health. 2021 May;111(5):956-964. doi: 10.2105/AJPH.2021.306154. Epub 2021 Mar 18.

Abstract

To examine the extent to which the phrases, "COVID-19" and "Chinese virus" were associated with anti-Asian sentiments. Data were collected from Twitter's Application Programming Interface, which included the hashtags "#covid19" or "#chinesevirus." We analyzed tweets from March 9 to 23, 2020, corresponding to the week before and the week after President Donald J. Trump's tweet with the phrase, "Chinese Virus." Our analysis focused on 1 273 141 hashtags. One fifth (19.7%) of the 495 289 hashtags with #covid19 showed anti-Asian sentiment, compared with half (50.4%) of the 777 852 hashtags with #chinesevirus. When comparing the week before March 16, 2020, to the week after, there was a significantly greater increase in anti-Asian hashtags associated with #chinesevirus compared with #covid19 ( < .001). Our data provide new empirical evidence supporting recommendations to use the less-stigmatizing term "COVID-19," instead of "Chinese virus."

摘要

为了考察“COVID-19”和“中国病毒”这两个短语与反亚裔情绪的关联程度,我们从 Twitter 的应用程序接口(Application Programming Interface)收集了数据,其中包括“#covid19”或“#chinesevirus”这两个标签。我们分析了 2020 年 3 月 9 日至 23 日(对应于唐纳德·J·特朗普总统发推使用“中国病毒”短语的前一周和后一周)的推文。我们的分析重点是 1273141 个标签。在与#covid19 相关的 495289 个标签中,有五分之一(19.7%)显示出反亚裔情绪,而与#chinesevirus 相关的 777852 个标签中,有一半(50.4%)显示出反亚裔情绪。与 2020 年 3 月 16 日之前的一周相比,之后的一周与#chinesevirus 相关的反亚裔标签显著增加,而与#covid19 相关的标签则没有显著增加(<.001)。我们的数据提供了新的经验证据,支持使用“COVID-19”这一不太带有污名化的术语,而不是“中国病毒”。

相似文献

1
Association of "#covid19" Versus "#chinesevirus" With Anti-Asian Sentiments on Twitter: March 9-23, 2020.
Am J Public Health. 2021 May;111(5):956-964. doi: 10.2105/AJPH.2021.306154. Epub 2021 Mar 18.
2
Exploring U.S. Shifts in Anti-Asian Sentiment with the Emergence of COVID-19.
Int J Environ Res Public Health. 2020 Sep 25;17(19):7032. doi: 10.3390/ijerph17197032.

引用本文的文献

4
Correction approaches and hashtag framing in addressing Mpox misinformation on Instagram.
Health Educ Res. 2025 Mar 24;40(2). doi: 10.1093/her/cyaf009.
5
Spatial Associations of Anti-Asian Hate on Social Media in the USA During COVID-19.
J Racial Ethn Health Disparities. 2025 Mar 18. doi: 10.1007/s40615-025-02386-w.
7
US State Public Health Agencies' Use of Twitter From 2012 to 2022: Observational Study.
J Med Internet Res. 2025 Jan 3;27:e59786. doi: 10.2196/59786.
8
COVID-Related Discrimination and Health Care Access among a Nationally Representative, Diverse Sample of US Adults.
J Racial Ethn Health Disparities. 2024 Dec 17. doi: 10.1007/s40615-024-02260-1.
9
Effects of COVID-19 related economic threat on political conservatism, xenophobia, and racial bias in the United States.
PLoS One. 2024 Sep 18;19(9):e0309766. doi: 10.1371/journal.pone.0309766. eCollection 2024.

本文引用的文献

2
Anti-Asian Hate Crime During the COVID-19 Pandemic: Exploring the Reproduction of Inequality.
Am J Crim Justice. 2020;45(4):647-667. doi: 10.1007/s12103-020-09545-1. Epub 2020 Jul 7.
4
The Pandemic of Hate is Giving COVID-19 a Helping Hand.
Am J Trop Med Hyg. 2020 Jun;102(6):1158-1159. doi: 10.4269/ajtmh.20-0285.
5
Covid-19 and the rise of racism.
BMJ. 2020 Apr 6;369:m1384. doi: 10.1136/bmj.m1384.
6
Use of social media to assess the impact of equitable state policies on LGBTQ patient experiences: An exploratory study.
Healthc (Amst). 2020 Jun;8(2):100410. doi: 10.1016/j.hjdsi.2020.100410. Epub 2020 Mar 30.
7
Feasibility of using social media to monitor outdoor air pollution in London, England.
Prev Med. 2019 Apr;121:86-93. doi: 10.1016/j.ypmed.2019.02.005. Epub 2019 Feb 8.
8
Spatio-Temporal Distribution of Negative Emotions in New York City After a Natural Disaster as Seen in Social Media.
Int J Environ Res Public Health. 2018 Oct 17;15(10):2275. doi: 10.3390/ijerph15102275.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验