Karz Alcida, Coudray Nicolas, Bayraktar Erol, Galbraith Kristyn, Jour George, Shadaloey Arman Alberto Sorin, Eskow Nicole, Rubanov Andrey, Navarro Maya, Moubarak Rana, Baptiste Gillian, Levinson Grace, Mezzano Valeria, Alu Mark, Loomis Cynthia, Lima Daniel, Rubens Adam, Jilaveanu Lucia, Tsirigos Aristotelis, Hernando Eva
Department of Pathology, NYU Grossman School of Medicine, New York, New York, USA.
Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA.
Pigment Cell Melanoma Res. 2025 Jan;38(1):e13195. doi: 10.1111/pcmr.13195. Epub 2024 Sep 10.
As efforts to study the mechanisms of melanoma metastasis and novel therapeutic approaches multiply, researchers need accurate, high-throughput methods to evaluate the effects on tumor burden resulting from specific interventions. We show that automated quantification of tumor content from whole slide images is a compelling solution to assess in vivo experiments. In order to increase the outflow of data collection from preclinical studies, we assembled a large dataset with annotations and trained a deep neural network for the quantitative analysis of melanoma tumor content on histopathological sections of murine models. After assessing its performance in segmenting these images, the tool obtained consistent results with an orthogonal method (bioluminescence) of measuring metastasis in an experimental setting. This AI-based algorithm, made freely available to academic laboratories through a web-interface called MetFinder, promises to become an asset for melanoma researchers and pathologists interested in accurate, quantitative assessment of metastasis burden.
随着研究黑色素瘤转移机制和新型治疗方法的努力不断增加,研究人员需要准确、高通量的方法来评估特定干预措施对肿瘤负荷的影响。我们表明,从全玻片图像自动定量肿瘤含量是评估体内实验的一个令人信服的解决方案。为了增加临床前研究数据收集的流出量,我们组装了一个带有注释的大型数据集,并训练了一个深度神经网络,用于对小鼠模型组织病理学切片上的黑色素瘤肿瘤含量进行定量分析。在评估其在分割这些图像方面的性能后,该工具在实验环境中与测量转移的正交方法(生物发光)获得了一致的结果。这种基于人工智能的算法通过一个名为MetFinder的网络界面免费提供给学术实验室,有望成为对准确、定量评估转移负担感兴趣的黑色素瘤研究人员和病理学家的一项资产。