Suppr超能文献

MetFinder:一种用于自动定量临床前模型组织学切片中转移负荷的工具。

MetFinder: A Tool for Automated Quantitation of Metastatic Burden in Histological Sections From Preclinical Models.

作者信息

Karz Alcida, Coudray Nicolas, Bayraktar Erol, Galbraith Kristyn, Jour George, Shadaloey Arman Alberto Sorin, Eskow Nicole, Rubanov Andrey, Navarro Maya, Moubarak Rana, Baptiste Gillian, Levinson Grace, Mezzano Valeria, Alu Mark, Loomis Cynthia, Lima Daniel, Rubens Adam, Jilaveanu Lucia, Tsirigos Aristotelis, Hernando Eva

机构信息

Department of Pathology, NYU Grossman School of Medicine, New York, New York, USA.

Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA.

出版信息

Pigment Cell Melanoma Res. 2025 Jan;38(1):e13195. doi: 10.1111/pcmr.13195. Epub 2024 Sep 10.

Abstract

As efforts to study the mechanisms of melanoma metastasis and novel therapeutic approaches multiply, researchers need accurate, high-throughput methods to evaluate the effects on tumor burden resulting from specific interventions. We show that automated quantification of tumor content from whole slide images is a compelling solution to assess in vivo experiments. In order to increase the outflow of data collection from preclinical studies, we assembled a large dataset with annotations and trained a deep neural network for the quantitative analysis of melanoma tumor content on histopathological sections of murine models. After assessing its performance in segmenting these images, the tool obtained consistent results with an orthogonal method (bioluminescence) of measuring metastasis in an experimental setting. This AI-based algorithm, made freely available to academic laboratories through a web-interface called MetFinder, promises to become an asset for melanoma researchers and pathologists interested in accurate, quantitative assessment of metastasis burden.

摘要

随着研究黑色素瘤转移机制和新型治疗方法的努力不断增加,研究人员需要准确、高通量的方法来评估特定干预措施对肿瘤负荷的影响。我们表明,从全玻片图像自动定量肿瘤含量是评估体内实验的一个令人信服的解决方案。为了增加临床前研究数据收集的流出量,我们组装了一个带有注释的大型数据集,并训练了一个深度神经网络,用于对小鼠模型组织病理学切片上的黑色素瘤肿瘤含量进行定量分析。在评估其在分割这些图像方面的性能后,该工具在实验环境中与测量转移的正交方法(生物发光)获得了一致的结果。这种基于人工智能的算法通过一个名为MetFinder的网络界面免费提供给学术实验室,有望成为对准确、定量评估转移负担感兴趣的黑色素瘤研究人员和病理学家的一项资产。

相似文献

1
MetFinder: A Tool for Automated Quantitation of Metastatic Burden in Histological Sections From Preclinical Models.
Pigment Cell Melanoma Res. 2025 Jan;38(1):e13195. doi: 10.1111/pcmr.13195. Epub 2024 Sep 10.
2
Skin cancer classification via convolutional neural networks: systematic review of studies involving human experts.
Eur J Cancer. 2021 Oct;156:202-216. doi: 10.1016/j.ejca.2021.06.049. Epub 2021 Sep 8.
3
A software tool for the quantification of metastatic colony growth dynamics and size distributions in vitro and in vivo.
PLoS One. 2018 Dec 27;13(12):e0209591. doi: 10.1371/journal.pone.0209591. eCollection 2018.
4
Deep Learning-Based Segmentation and Quantification in Experimental Kidney Histopathology.
J Am Soc Nephrol. 2021 Jan;32(1):52-68. doi: 10.1681/ASN.2020050597. Epub 2020 Nov 5.
5
Automated segmentation of regions of interest in whole slide skin histopathological images.
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:3869-72. doi: 10.1109/EMBC.2015.7319238.
6
Learning how to detect: A deep reinforcement learning method for whole-slide melanoma histopathology images.
Comput Med Imaging Graph. 2023 Sep;108:102275. doi: 10.1016/j.compmedimag.2023.102275. Epub 2023 Jul 29.
8
Detection of malignant melanoma in H&E-stained images using deep learning techniques.
Tissue Cell. 2021 Dec;73:101659. doi: 10.1016/j.tice.2021.101659. Epub 2021 Sep 29.
9
Robust ROI Detection in Whole Slide Images Guided by Pathologists' Viewing Patterns.
J Imaging Inform Med. 2025 Feb;38(1):439-454. doi: 10.1007/s10278-024-01202-x. Epub 2024 Aug 9.
10
Deep learning detection of melanoma metastases in lymph nodes.
Eur J Cancer. 2023 Jul;188:161-170. doi: 10.1016/j.ejca.2023.04.023. Epub 2023 Apr 29.

本文引用的文献

2
Correction to: Machine learning for rhabdomyosarcoma histopathology.
Mod Pathol. 2022 Oct;35(10):1496. doi: 10.1038/s41379-022-01098-4.
4
Melanoma-Secreted Amyloid Beta Suppresses Neuroinflammation and Promotes Brain Metastasis.
Cancer Discov. 2022 May 2;12(5):1314-1335. doi: 10.1158/2159-8290.CD-21-1006.
5
Artificial Intelligence-based Tumor Segmentation in Mouse Models of Lung Adenocarcinoma.
J Pathol Inform. 2022 Jan 20;13:100007. doi: 10.1016/j.jpi.2022.100007. eCollection 2022.
6
Overcoming unintended immunogenicity in immunocompetent mouse models of metastasis: the case of GFP.
Signal Transduct Target Ther. 2022 Mar 3;7(1):68. doi: 10.1038/s41392-022-00929-9.
7
The histone demethylase PHF8 regulates TGFβ signaling and promotes melanoma metastasis.
Sci Adv. 2022 Feb 18;8(7):eabi7127. doi: 10.1126/sciadv.abi7127.
8
Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis.
Nat Cancer. 2020 Aug;1(8):800-810. doi: 10.1038/s43018-020-0085-8. Epub 2020 Jul 27.
9
Elimination of fluorescent protein immunogenicity permits modeling of metastasis in immune-competent settings.
Cancer Cell. 2022 Jan 10;40(1):1-2. doi: 10.1016/j.ccell.2021.11.004. Epub 2021 Dec 2.
10
Deep Learning and Pathomics Analyses Reveal Cell Nuclei as Important Features for Mutation Prediction of BRAF-Mutated Melanomas.
J Invest Dermatol. 2022 Jun;142(6):1650-1658.e6. doi: 10.1016/j.jid.2021.09.034. Epub 2021 Oct 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验