Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg 69120, Germany.
Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany.
Proc Natl Acad Sci U S A. 2024 Sep 17;121(38):e2412241121. doi: 10.1073/pnas.2412241121. Epub 2024 Sep 10.
Dynein is the primary molecular motor responsible for retrograde intracellular transport of a variety of cargoes, performing successive nanometer-sized steps within milliseconds. Due to the limited spatiotemporal precision of established methods for molecular tracking, current knowledge of dynein stepping is essentially limited to slowed-down measurements in vitro. Here, we use MINFLUX fluorophore localization to directly track CRISPR/Cas9-tagged endogenous dynein with nanometer/millisecond precision in living primary neurons. We show that endogenous dynein primarily takes 8 nm steps, including frequent sideways steps but few backward steps. Strikingly, the majority of direction reversals between retrograde and anterograde movement occurred on the time scale of single steps (16 ms), suggesting a rapid regulatory reversal mechanism. Tug-of-war-like behavior during pauses or reversals was unexpectedly rare. By analyzing the dwell time between steps, we concluded that a single rate-limiting process underlies the dynein stepping mechanism, likely arising from just one adenosine 5'-triphosphate hydrolysis event being required during each step. Our study underscores the power of MINFLUX localization to elucidate the spatiotemporal changes underlying protein function in living cells.
动力蛋白是负责多种货物逆行细胞内运输的主要分子马达,在几毫秒内完成连续的纳米级步骤。由于用于分子追踪的既定方法的时空精度有限,目前对动力蛋白步进的了解基本上仅限于体外的减速测量。在这里,我们使用 MINFLUX 荧光定位技术,以纳米/毫秒的精度直接在活原代神经元中跟踪 CRISPR/Cas9 标记的内源性动力蛋白。我们表明,内源性动力蛋白主要采取 8nm 的步长,包括频繁的侧向步长,但很少有向后的步长。引人注目的是,逆行和顺行运动之间的大部分方向反转发生在单个步长的时间尺度上(16ms),表明存在快速的调节反转机制。在停顿或反转期间拔河行为很少见。通过分析步长之间的停留时间,我们得出结论,单个限速步骤是动力蛋白步进机制的基础,这可能是因为每个步长只需要一个腺苷 5'-三磷酸的水解事件。我们的研究强调了 MINFLUX 定位在阐明活细胞中蛋白质功能的时空变化方面的强大功能。