Suppr超能文献

DITTO:头颈癌干预与时间性治疗结果的可视化数字孪生模型

DITTO: A Visual Digital Twin for Interventions and Temporal Treatment Outcomes in Head and Neck Cancer.

作者信息

Wentzel Andrew, Attia Serageldin, Zhang Xinhua, Canahuate Guadalupe, Fuller Clifton David, Marai G Elisabeta

出版信息

IEEE Trans Vis Comput Graph. 2025 Jan;31(1):65-75. doi: 10.1109/TVCG.2024.3456160. Epub 2024 Nov 25.

Abstract

Digital twin models are of high interest to Head and Neck Cancer (HNC) oncologists, who have to navigate a series of complex treatment decisions that weigh the efficacy of tumor control against toxicity and mortality risks. Evaluating individual risk profiles necessitates a deeper understanding of the interplay between different factors such as patient health, spatial tumor location and spread, and risk of subsequent toxicities that can not be adequately captured through simple heuristics. To support clinicians in better understanding tradeoffs when deciding on treatment courses, we developed DITTO, a digital-twin and visual computing system that allows clinicians to analyze detailed risk profiles for each patient, and decide on a treatment plan. DITTO relies on a sequential Deep Reinforcement Learning digital twin (DT) to deliver personalized risk of both long-term and short-term disease outcome and toxicity risk for HNC patients. Based on a participatory collaborative design alongside oncologists, we also implement several visual explainability methods to promote clinical trust and encourage healthy skepticism when using our system. We evaluate the efficacy of DITTO through quantitative evaluation of performance and case studies with qualitative feedback. Finally, we discuss design lessons for developing clinical visual XAI applications for clinical end users.

摘要

数字孪生模型引起了头颈癌(HNC)肿瘤学家的高度关注,他们必须在一系列复杂的治疗决策中权衡肿瘤控制的疗效与毒性和死亡风险。评估个体风险概况需要更深入地了解不同因素之间的相互作用,如患者健康状况、肿瘤的空间位置和扩散情况,以及后续毒性风险,而这些无法通过简单的启发式方法充分捕捉。为了支持临床医生在决定治疗方案时更好地理解权衡取舍,我们开发了DITTO,这是一个数字孪生和视觉计算系统,使临床医生能够分析每个患者的详细风险概况,并确定治疗计划。DITTO依靠一个顺序深度强化学习数字孪生(DT)来提供HNC患者长期和短期疾病结果以及毒性风险的个性化风险。基于与肿瘤学家的参与式协作设计,我们还实施了几种视觉可解释性方法,以促进临床信任,并在使用我们的系统时鼓励合理怀疑。我们通过性能的定量评估和带有定性反馈的案例研究来评估DITTO的疗效。最后,我们讨论了为临床终端用户开发临床视觉可解释人工智能应用的设计经验。

相似文献

6
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

本文引用的文献

8
DASS Good: Explainable Data Mining of Spatial Cohort Data.DASS Good:空间队列数据的可解释数据挖掘
Comput Graph Forum. 2023 Jun;42(3):283-295. doi: 10.1111/cgf.14830. Epub 2023 Jun 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验