Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan.
Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan.
Sci Signal. 2024 Sep 10;17(853):eado9852. doi: 10.1126/scisignal.ado9852.
Structural plasticity of dendritic spines in the nucleus accumbens (NAc) is crucial for learning from aversive experiences. Activation of NMDA receptors (NMDARs) stimulates Ca-dependent signaling that leads to changes in the actin cytoskeleton, mediated by the Rho family of GTPases, resulting in postsynaptic remodeling essential for learning. We investigated how phosphorylation events downstream of NMDAR activation drive the changes in synaptic morphology that underlie aversive learning. Large-scale phosphoproteomic analyses of protein kinase targets in mouse striatal/accumbal slices revealed that NMDAR activation resulted in the phosphorylation of 194 proteins, including RhoA regulators such as ARHGEF2 and ARHGAP21. Phosphorylation of ARHGEF2 by the Ca-dependent protein kinase CaMKII enhanced its RhoGEF activity, thereby activating RhoA and its downstream effector Rho-associated kinase (ROCK/Rho-kinase). Further phosphoproteomic analysis identified 221 ROCK targets, including the postsynaptic scaffolding protein SHANK3, which is crucial for its interaction with NMDARs and other postsynaptic scaffolding proteins. ROCK-mediated phosphorylation of SHANK3 in the NAc was essential for spine growth and aversive learning. These findings demonstrate that NMDAR activation initiates a phosphorylation cascade crucial for learning and memory.
标题:Accumbens 核内树突棘的结构可塑性对于从厌恶体验中学习至关重要
摘要:**Accumbens 核内树突棘的结构可塑性对于从厌恶体验中学习至关重要。N-甲基-D-天冬氨酸受体 (NMDAR) 的激活刺激 Ca 依赖性信号转导,导致肌动蛋白细胞骨架发生变化,这是由 Rho 家族 GTP 酶介导的,对于学习所必需的突触后重塑至关重要。我们研究了 NMDAR 激活下游的磷酸化事件如何驱动支持厌恶学习的突触形态变化。对小鼠纹状体/伏隔核切片中的蛋白激酶靶标进行大规模磷酸化蛋白质组学分析表明,NMDAR 激活导致 194 种蛋白质的磷酸化,包括 RhoA 调节剂,如 ARHGEF2 和 ARHGAP21。Ca 依赖性蛋白激酶 CaMKII 对 ARHGEF2 的磷酸化增强了其 RhoGEF 活性,从而激活了 RhoA 和其下游效应子 Rho 相关激酶 (ROCK/Rho-kinase)。进一步的磷酸化蛋白质组学分析鉴定了 221 个 ROCK 靶标,包括突触后支架蛋白 SHANK3,它对于与 NMDAR 及其它突触后支架蛋白的相互作用至关重要。ROCK 介导的 NAc 中 SHANK3 的磷酸化对于棘突生长和厌恶学习是必需的。这些发现表明,NMDAR 激活引发了一个对学习和记忆至关重要的磷酸化级联反应。