Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Nagoya 466-8550, Japan.
Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake 470-1192, Japan.
Int J Mol Sci. 2022 Dec 26;24(1):404. doi: 10.3390/ijms24010404.
The N-methyl-D-aspartate receptor (NMDAR)-mediated structural plasticity of dendritic spines plays an important role in synaptic transmission in the brain during learning and memory formation. The Rho family of small GTPase RhoA and its downstream effector Rho-kinase/ROCK are considered as one of the major regulators of synaptic plasticity and dendritic spine formation, including long-term potentiation (LTP). However, the mechanism by which Rho-kinase regulates synaptic plasticity is not yet fully understood. Here, we found that Rho-kinase directly phosphorylated discs large MAGUK scaffold protein 2 (DLG2/PSD-93), a major postsynaptic scaffold protein that connects postsynaptic proteins with NMDARs; an ionotropic glutamate receptor, which plays a critical role in synaptic plasticity. Stimulation of striatal slices with an NMDAR agonist induced Rho-kinase-mediated phosphorylation of PSD-93 at Thr612. We also identified PSD-93-interacting proteins, including DLG4 (PSD-95), NMDARs, synaptic Ras GTPase-activating protein 1 (SynGAP1), ADAM metallopeptidase domain 22 (ADAM22), and leucine-rich glioma-inactivated 1 (LGI1), by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Among them, Rho-kinase increased the binding of PSD-93 to PSD-95 and NMDARs. Furthermore, we found that chemical-LTP induced by glycine, which activates NMDARs, increased PSD-93 phosphorylation at Thr612, spine size, and PSD-93 colocalization with PSD-95, while these events were blocked by pretreatment with a Rho-kinase inhibitor. These results indicate that Rho-kinase phosphorylates PSD-93 downstream of NMDARs, and suggest that Rho-kinase mediated phosphorylation of PSD-93 increases the association with PSD-95 and NMDARs to regulate structural synaptic plasticity.
N-甲基-D-天冬氨酸受体(NMDAR)介导热敏性树突棘结构可塑性在学习和记忆形成过程中大脑的突触传递中发挥重要作用。Rho 家族小 GTP 酶 RhoA 及其下游效应物 Rho 激酶/ROCK 被认为是突触可塑性和树突棘形成的主要调节因子之一,包括长时程增强(LTP)。然而,Rho 激酶调节突触可塑性的机制尚未完全阐明。在这里,我们发现 Rho 激酶可直接磷酸化离散大 MAGUK 支架蛋白 2(DLG2/PSD-93),后者是一种主要的突触后支架蛋白,可将突触后蛋白与 NMDAR 连接;离子型谷氨酸受体,在突触可塑性中起着关键作用。用 NMDAR 激动剂刺激纹状体切片可诱导 Rho 激酶介导的 PSD-93 在 Thr612 处的磷酸化。我们还通过液相色谱-串联质谱(LC-MS/MS)鉴定了 PSD-93 相互作用蛋白,包括 PSD-95、NMDAR、突触 Ras GTP 酶激活蛋白 1(SynGAP1)、ADAM 金属肽酶结构域 22(ADAM22)和亮氨酸丰富胶质瘤失活 1(LGI1)。其中,Rho 激酶增加了 PSD-93 与 PSD-95 和 NMDAR 的结合。此外,我们发现甘氨酸诱导的化学性 LTP(通过激活 NMDAR)增加了 PSD-93 在 Thr612 处的磷酸化、棘突大小和 PSD-93 与 PSD-95 的共定位,而这些事件被 Rho 激酶抑制剂预处理所阻断。这些结果表明 Rho 激酶在 NMDAR 下游磷酸化 PSD-93,并表明 Rho 激酶介导的 PSD-93 磷酸化增加了与 PSD-95 和 NMDAR 的关联,从而调节结构突触可塑性。
Int J Mol Sci. 2022-12-26
Eur J Cell Biol. 2006-7
Crit Rev Neurobiol. 2006
Neurology. 2023-9-19
Int J Mol Sci. 2023-3-17
Nat Rev Neurosci. 2021-7
Proc Natl Acad Sci U S A. 2021-1-19
Transl Stroke Res. 2020-10
Neuron. 2018-10-24