Institute of Chemical Sciences and Technologies - "G. Natta", Italian National Research Council, via A. Corti 12, 20133 Milan, Italy.
Leibniz-Institut für Verbundwerkstoffe GmbH, Technische Universität, Erwin-Schrödinger, straße 58, 67663 Kaiserlauntern, Germany.
Int J Biol Macromol. 2024 Oct;278(Pt 4):135282. doi: 10.1016/j.ijbiomac.2024.135282. Epub 2024 Sep 10.
Nanocrystalline Cellulose (NCC or CNC) is widely used as a filler in polymer composites due to its high specific strength, tensile modulus, aspect ratio, and sustainability. However, CNC hydrophilicity complicates its dispersion in hydrophobic polymeric matrices giving rise to aggregate structures and thus compromising its reinforcing action. CNC functionalization in a homogeneous environment, through silanization with trichloro(butyl)silane as a coupling agent and subsequent grafting with bio-based polyols, is herein investigated aiming to enhance CNC dispersibility improving the filler-matrix interaction between the hydrophobic PU and hydrophilic CNC. The modified CNCs (m_Ci) have been studied by XRD, SEM, and TGA analyses. The TGA results show that the amount of grafted polyol is strongly influenced by both its molar mass and OH number and the maximum amount of grafted polyol reaches up to 0.32 mmol per grams of functionalized CNC, within the explored conditions. The effect of different concentrations (1-3 wt%) of m_Ci on the physical, morphological, and mechanical properties of the resulting bio-based composite polyurethane foams is evaluated. Composite PU foams present compressive modulus up to 4.81 MPa and strength up to 255 kPa more than five times higher than those reinforced with unmodified CNC or with modified CNC in heterogeneous chemical environment. The improvement of mechanical properties of the examined PU foams, as a consequence of the incorporation of bio-polyols modified CNCs where polyol's OH groups interact with polyurethane precursors, could further broaden the use of these materials in building applications.
纳米纤维素(NCC 或 CNC)由于其高比强度、拉伸模量、纵横比和可持续性,被广泛用作聚合物复合材料中的填料。然而,CNC 的亲水性使其在疏水性聚合物基体中难以分散,导致形成聚集体结构,从而降低其增强作用。本文通过使用三氯丁基硅烷作为偶联剂进行硅烷化,并随后用生物基多元醇接枝,在均相环境中对 CNC 进行功能化,旨在提高 CNC 的分散性,改善疏水性 PU 和亲水性 CNC 之间的填料-基质相互作用。通过 XRD、SEM 和 TGA 分析研究了改性 CNC(m_Ci)。TGA 结果表明,接枝多元醇的量强烈受到其摩尔质量和 OH 数的影响,在探索的条件下,接枝多元醇的最大量达到每克功能化 CNC 0.32mmol。研究了不同浓度(1-3wt%)的 m_Ci 对所得生物基复合聚氨酯泡沫的物理、形态和机械性能的影响。复合 PU 泡沫的压缩模量高达 4.81MPa,强度高达 255kPa,比用未改性 CNC 或在异相化学环境中用改性 CNC 增强的泡沫高五倍以上。由于引入了与聚氨酯前体相互作用的生物多元醇改性 CNC,所研究的 PU 泡沫的机械性能得到了改善,这可能会进一步拓宽这些材料在建筑应用中的使用。