Suppr超能文献

基于深度学习的生物活性治疗性肽生成与筛选。

Deep Learning-Based Bioactive Therapeutic Peptide Generation and Screening.

机构信息

Shenzhen Institute of Synthetic Biology, Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.

Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai 600073, Tamil Nadu, India.

出版信息

J Chem Inf Model. 2023 Feb 13;63(3):835-845. doi: 10.1021/acs.jcim.2c01485. Epub 2023 Feb 1.

Abstract

Many bioactive peptides demonstrated therapeutic effects over complicated diseases, such as antiviral, antibacterial, anticancer, . It is possible to generate a large number of potentially bioactive peptides using deep learning in a manner analogous to the generation of chemical compounds using the acquired bioactive peptides as a training set. Such generative techniques would be significant for drug development since peptides are much easier and cheaper to synthesize than compounds. Despite the limited availability of deep learning-based peptide-generating models, we have built an LSTM model (called LSTM_Pep) to generate peptides and fine-tuned the model to generate peptides with specific prospective therapeutic benefits. Remarkably, the Antimicrobial Peptide Database has been effectively utilized to generate various kinds of potential active peptides. We proposed a pipeline for screening those generated peptides for a given target and used the main protease of SARS-COV-2 as a proof-of-concept. Moreover, we have developed a deep learning-based protein-peptide prediction model (DeepPep) for rapid screening of the generated peptides for the given targets. Together with the generating model, we have demonstrated that iteratively fine-tuning training, generating, and screening peptides for higher-predicted binding affinity peptides can be achieved. Our work sheds light on developing deep learning-based methods and pipelines to effectively generate and obtain bioactive peptides with a specific therapeutic effect and showcases how artificial intelligence can help discover bioactive peptides that can bind to a particular target.

摘要

许多生物活性肽在治疗复杂疾病方面表现出了疗效,如抗病毒、抗菌、抗癌等。可以使用深度学习以类似于使用已获得的生物活性肽作为训练集生成化合物的方式生成大量潜在的生物活性肽。由于肽比化合物更容易和更便宜合成,因此这种生成技术对于药物开发非常重要。尽管基于深度学习的肽生成模型的可用性有限,但我们已经构建了一个 LSTM 模型(称为 LSTM_Pep)来生成肽,并对该模型进行了微调,以生成具有特定预期治疗益处的肽。值得注意的是,抗菌肽数据库已被有效地用于生成各种潜在的活性肽。我们提出了一个用于筛选给定目标的那些生成肽的筛选管道,并使用 SARS-COV-2 的主要蛋白酶作为概念验证。此外,我们还开发了一种基于深度学习的蛋白质-肽预测模型(DeepPep),用于快速筛选给定目标的生成肽。结合生成模型,我们证明了可以通过迭代地微调训练、生成和筛选肽来获得具有更高预测结合亲和力的肽。我们的工作为开发基于深度学习的方法和管道以有效生成和获得具有特定治疗效果的生物活性肽提供了思路,并展示了人工智能如何帮助发现可以与特定目标结合的生物活性肽。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验