Suppr超能文献

结合房室模型和深度学习模型的大流行长期趋势预测。

Long-term trend prediction of pandemic combining the compartmental and deep learning models.

机构信息

College of Computer Science and Engineering, Northwest Normal University, Lanzhou, 730070, China.

出版信息

Sci Rep. 2024 Sep 9;14(1):21068. doi: 10.1038/s41598-024-72005-x.

Abstract

Predicting the spread trends of a pandemic is crucial, but long-term prediction remains challenging due to complex relationships among disease spread stages and preventive policies. To address this issue, we propose a novel approach that utilizes data augmentation techniques, compartmental model features, and disease preventive policies. We also use a breakpoint detection method to divide the disease spread into distinct stages and weight these stages using a self-attention mechanism to account for variations in virus transmission capabilities. Finally, we introduce a long-term spread trend prediction model for infectious diseases based on a bi-directional gated recurrent unit network. To evaluate the effectiveness of our model, we conducted experiments using public datasets, focusing on the prediction of COVID-19 cases in four countries over a period of 210 days. Experiments shown that the Adjust-R2 index of our model exceeds 0.9914, outperforming existing models. Furthermore, our model reduces the mean absolute error by 0.85-4.52% compared to other models. Our combined approach of using both the compartmental and deep learning models provides valuable insights into the dynamics of disease spread.

摘要

预测疫情的传播趋势至关重要,但由于疾病传播阶段和预防政策之间存在复杂的关系,长期预测仍然具有挑战性。为了解决这个问题,我们提出了一种新的方法,该方法利用了数据增强技术、房室模型特征和疾病预防政策。我们还使用了一个断点检测方法将疾病传播分为不同的阶段,并使用自注意力机制对这些阶段进行加权,以考虑病毒传播能力的变化。最后,我们引入了一种基于双向门控循环单元网络的传染病长期传播趋势预测模型。为了评估我们模型的有效性,我们使用公共数据集进行了实验,重点是对四个国家 COVID-19 病例的 210 天预测。实验表明,我们模型的调整 R2 指数超过 0.9914,优于现有模型。此外,与其他模型相比,我们的模型将平均绝对误差降低了 0.85-4.52%。我们结合使用房室模型和深度学习模型的方法为疾病传播的动态提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5461/11387753/8fa860bc1448/41598_2024_72005_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验