Suppr超能文献

使用SEIR和ARIMA模型预测肯尼亚COVID-19大流行的传播情况。

Forecasting the spread of the COVID-19 pandemic in Kenya using SEIR and ARIMA models.

作者信息

Kiarie Joyce, Mwalili Samuel, Mbogo Rachel

机构信息

Institute of Mathematical Sciences, Strathmore University, Nairobi, Kenya.

School of Mathematical and Physical Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya.

出版信息

Infect Dis Model. 2022 Jun;7(2):179-188. doi: 10.1016/j.idm.2022.05.001. Epub 2022 May 23.

Abstract

COVID-19, a coronavirus disease 2019, is an ongoing pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The first case in Kenya was identified on March 13, 2020, with the pandemic increasing to about 237,000 confirmed cases and 4,746 deaths by August 2021. We developed an SEIR model forecasting the COVID-19 pandemic in Kenya using an Autoregressive Integrated moving averages (ARIMA) model. The average time difference between the peaks of wave 1 to wave 4 was observed to be about 130 days. The 4th wave was observed to have had the least number of daily cases at the peak. According to the forecasts made for the next 60 days, the pandemic is expected to continue for a while. The 4th wave peaked on August 26, 2021 (498th day). By October 26, 2021 (60th day), the average number of daily infections will be 454 new cases and 40 severe cases, which would require hospitalization, and 16 critically ill cases requiring intensive care unit services. The findings of this study are key in developing informed mitigation strategies to ensure that the pandemic is contained and inform the preparedness of policymakers and health care workers.

摘要

2019冠状病毒病(COVID-19)是由严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引起的一场持续的大流行病。肯尼亚的首例病例于2020年3月13日被确认,到2021年8月,该大流行病已增至约23.7万例确诊病例和4746例死亡病例。我们使用自回归积分移动平均(ARIMA)模型开发了一个预测肯尼亚COVID-19大流行的SEIR模型。观察到第1波至第4波高峰之间的平均时间差约为130天。观察到第4波高峰时的每日病例数最少。根据对未来60天的预测,预计该大流行病还将持续一段时间。第4波于2021年8月26日(第498天)达到高峰。到2021年10月26日(第60天),每日平均感染数将为454例新病例和40例需要住院治疗的重症病例,以及16例需要重症监护病房服务的危重症病例。本研究的结果对于制定明智的缓解策略以确保控制大流行病以及为政策制定者和医护人员的准备工作提供信息至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8a4/9144016/72be6237d9ac/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验