Suppr超能文献

一种使用生成式磁共振成像(MRI)和可解释人工智能,从认知正常受试者预测阿尔茨海默病进展的综合模型。

An integrated predictive model for Alzheimer's disease progression from cognitively normal subjects using generated MRI and interpretable AI.

作者信息

Aghaei Atefe, Moghaddam Mohsen Ebrahimi

机构信息

Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran.

出版信息

Sci Rep. 2025 Aug 4;15(1):28340. doi: 10.1038/s41598-025-13478-2.

Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that begins with subtle cognitive changes and advances to severe impairment. Early diagnosis is crucial for effective intervention and management. In this study, we propose an integrated framework that leverages ensemble transfer learning, generative modeling, and automatic ROI extraction techniques to predict the progression of Alzheimer's disease from cognitively normal (CN) subjects. Using the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, we employ a three-stage process: (1) estimating the probability of transitioning from CN to mild cognitive impairment (MCI) using ensemble transfer learning, (2) generating future MRI images using Transformer-based Generative Adversarial Network (ViT-GANs) to simulate disease progression after two years, and (3) predicting AD using a 3D convolutional neural network (CNN) with calibrated probabilities using isotonic regression and interpreting critical regions of interest (ROIs) with Gradient-weighted Class Activation Mapping (Grad-CAM). However, the proposed method has generality and may work when sufficient data for simulating brain changes after three years or more is available; in the training phase, regarding available data, brain changes after 2 years have been considered. Our approach addresses the challenge of limited longitudinal data by creating high-quality synthetic images and improving model transparency by identifying key brain regions involved in disease progression. The proposed method demonstrates high accuracy and F1-score, 0.85 and 0.86, respectively, in CN to AD prediction up to 10 years, offering a potential tool for early diagnosis and personalized intervention strategies in Alzheimer's disease.

摘要

阿尔茨海默病(AD)是一种进行性神经退行性疾病,始于细微的认知变化,进而发展为严重损害。早期诊断对于有效干预和管理至关重要。在本研究中,我们提出了一个综合框架,该框架利用集成迁移学习、生成建模和自动感兴趣区域(ROI)提取技术,从认知正常(CN)受试者预测阿尔茨海默病的进展。使用阿尔茨海默病神经成像倡议(ADNI)数据集,我们采用了一个三阶段过程:(1)使用集成迁移学习估计从CN转变为轻度认知障碍(MCI)的概率,(2)使用基于Transformer的生成对抗网络(ViT-GANs)生成未来的MRI图像,以模拟两年后的疾病进展,(3)使用具有校准概率的3D卷积神经网络(CNN)预测AD,并使用梯度加权类激活映射(Grad-CAM)解释关键感兴趣区域(ROIs)。然而,所提出的方法具有通用性,当有足够的数据用于模拟三年或更长时间后的脑变化时可能会起作用;在训练阶段,考虑到可用数据,已经考虑了两年后的脑变化。我们的方法通过创建高质量的合成图像来应对纵向数据有限的挑战,并通过识别疾病进展中涉及的关键脑区来提高模型透明度。所提出的方法在长达10年的CN到AD预测中分别展示了高达0.85和0.86的高精度和F1分数,为阿尔茨海默病的早期诊断和个性化干预策略提供了一种潜在工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba19/12322055/06b012d11dcf/41598_2025_13478_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验