Suppr超能文献

卤化物在CsAgBi(I,Br)双钙钛矿中的混合:一种调节激子性质的途径。

Halide Mixing in CsAgBi(I Br ) Double Perovskites: A Pathway to Tunable Excitonic Properties.

作者信息

Biega Raisa-Ioana, Jöbsis Huygen J, Gijsberg Zamorano, Hüskens Maxim, Hutter Eline M, Leppert Linn

机构信息

MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands.

Debye Institute for Nanomaterials Science, Utrecht University, Princetonlaan 8, 3584 CB Utrecht, The Netherlands.

出版信息

J Phys Chem C Nanomater Interfaces. 2024 Aug 26;128(35):14767-14775. doi: 10.1021/acs.jpcc.4c04453. eCollection 2024 Sep 5.

Abstract

CsAgBiBr is an emerging double perovskite semiconductor with robust stability. However, its potential for photovoltaics is limited by its indirect band gap and localized electronic structure featuring a resonant exciton with a large binding energy. CsAgBi(I Br ) nanocrystals with iodide concentrations of up to 100% were recently demonstrated, but an atomistic understanding of how halide mixing affects the electronic and excited-state structure is missing. Here, we use first-principles GW and Bethe-Salpeter Equation calculations to show that halide mixing leads to a pronounced change in the band gap and character of optical excitations. Exciton binding energies are reduced by up to a factor of 5, with significantly more delocalized excitons in I-rich compounds. We further show that phase-pure bulk alloys with ≤ 0.11 can be fabricated using mechanosynthesis and measure a red-shifted absorption in line with our calculations. Our study highlights that halide mixing in double perovskites can not only lead to significant band gap changes but may also be used for tuning excitonic properties.

摘要

CsAgBiBr是一种新兴的具有强大稳定性的双钙钛矿半导体。然而,其在光伏领域的潜力受到其间接带隙和具有大结合能的共振激子的局域电子结构的限制。最近已证明存在碘化物浓度高达100%的CsAgBi(I Br)纳米晶体,但对于卤化物混合如何影响电子和激发态结构缺乏原子层面的理解。在此,我们使用第一性原理GW和贝叶斯 - 萨尔皮特方程计算表明,卤化物混合会导致带隙和光学激发特性发生显著变化。激子结合能降低了多达5倍,在富碘化合物中离域激子明显更多。我们进一步表明,使用机械合成可以制备出≤0.11的纯相块状合金,并测量到与我们计算结果相符的红移吸收。我们的研究强调,双钙钛矿中的卤化物混合不仅会导致显著的带隙变化,还可用于调节激子特性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14e1/11382272/fbca89e2d7d3/jp4c04453_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验