Jöbsis Huygen J, Muscarella Loreta A, Andrzejewski Michał, Casati Nicola P M, Hutter Eline M
Department of Chemistry, Utrecht University, Princetonlaan 8, Utrecht 3584 CB, The Netherlands.
Swiss Light Source, Paul Scherrer Institute, Forschungstrasse 111, Villigen 5232, Switzerland.
J Am Chem Soc. 2025 Jul 16;147(28):24519-24526. doi: 10.1021/jacs.5c05045. Epub 2025 Jul 3.
Mechanochemical ball mill synthesis is an emerging method for producing complex materials, including alloyed halide elpasolite semiconductors. This solvent-free method offers precise control over chemical composition, enabling fine-tuning of the optical and mechanical properties. However, the formation mechanism of alloyed elpasolites remains unclear. In this work, we elucidate the crystallization kinetics of mechanochemical formation of CsAgBiMBr [M = Sb, In, or Fe] using synchrotron X-ray diffraction experiments. We identify the reaction intermediates for the parent composition CsAgBiBr, and we find that -BiSb- forms via a similar reaction pathway. Alloying with In or Fe, on the other hand, occurs via an additional cation-exchange step. These insights into the mechanochemical formation mechanisms of alloyed AgBi-elpasolites provide guidelines toward rational compositional engineering of complex materials.
机械化学球磨合成是一种用于生产包括合金卤化物铯镓石半导体在内的复杂材料的新兴方法。这种无溶剂方法能够精确控制化学成分,从而对光学和机械性能进行微调。然而,合金铯镓石的形成机制仍不清楚。在这项工作中,我们利用同步加速器X射线衍射实验阐明了CsAgBiMBr [M = Sb、In或Fe] 机械化学形成的结晶动力学。我们确定了母体成分CsAgBiBr的反应中间体,并发现 -BiSb- 通过类似的反应途径形成。另一方面,与In或Fe的合金化是通过额外的阳离子交换步骤发生的。这些对合金化AgBi-铯镓石机械化学形成机制的见解为复杂材料的合理成分工程提供了指导。